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Abstract: 

 

 Understanding turbulence in the divertor leg of tokamaks is essential to predicting the 

heat deposition profile on the divertor plate.  This in turn is important for evaluating advanced 

divertor configurations, such as the super-X divertor.  Within the divertor region, the private flux 

region is of interest because it is relatively unaffected by turbulence extending from the 

outboard midplane, so instabilities in this region could have a particularly pronounced effect on 

transport.  These instabilities are modeled using the Arbitrary Topology Equation Reader 

(ArbiTER) eigenvalue code.  Eigenmodes are examined further by comparing physics models to 

determine the fundamental mechanisms behind their formation, and quantifying the effect of 

individual terms.  This analysis is conducted on both conventional and super-X divertors to 

compare these effects.  The resulting analysis reveals the presence of a geodesic curvature 

driven instability that is significantly more pronounced in the super-X configuration. 
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 2 

 

I Introduction 

 

 Advanced divertor configurations such as the super-X divertor1 are important for 

managing heat fluxes in the divertor region of present day and next-generation fusion 

experiments.2  Modeling their behavior provides essential predictive capability for evaluating 

such designs.  Of particular importance in this regard is the modeling of instabilities in the 

scrape-off layer and private flux region.  These topological regions extend into the divertor leg, 

and therefore are likely to exhibit different behavior in different divertor configurations.  

Turbulence and filamentary structures in these regions can play an important role in distributing 

heat flux, and thus are essential to evaluating the performance of such designs. 

 Filaments in the private flux region, presumably generated by instabilities, have been 

observed in a number of experiments.  Harrison3 and Walkden4 observed such instability in 

MAST.  Scotti5 observed filaments in the inner divertor leg of NSTX-U.  Terry6 also observed inner 

leg filaments in Alcator C-mod.  In addition, this topic has been the focus of a number of 

theoretical7,8,9,10,11,12,13 and experimental14 studies. 

 An important tool for understanding such turbulence is the use of linear calculations.  

While such calculations do not model the saturation mechanism or energy cascade of such 

turbulence, they can provide insight into the underlying instability and associated mechanisms 

driving the turbulence.  They also allow a detailed analysis of the role of specific terms in the 

model equations; once an eigenmode has been calculated, the resulting amplitudes can be 

substituted back into the model equations to determine their relative significance.  This reveals 

the physical mechanism behind the turbulence.  This type of analysis is difficult to perform on 

fully developed turbulence, hence illustrating the value of a linear simulation. 

 Linear instabilities in the scrape-off layer and private flux region have been considered 

in previous theoretical work. In Refs. 7 and 8 a dispersion relation was derived for low-beta 

flute-like modes in the divertor-leg region under the combined drives of curvature, sheath 

impedance and divertor plate tilt effects. More general geometry was treated in Ref. 9 which 

included the destabilizing contribution of geodesic curvature on flute modes.  We will return to 

the role of geodesic curvature in detail later, as it is the main focus of our paper. A different 

instability, driven by sheath boundary conditions, the Te sheath instability or so-called 

‘conducting wall’ instability was considered in Ref. 10 and 11. 

 This paper describes a series of linear simulations of the private flux region of the MAST-

Upgrade spherical tokamak plasma using design geometry and physical parameters.  The 

simulations compare different models to determine which terms in the physics model are 

essential, and compare different divertor configurations to determine how they affect the 

eigenmodes.  It then uses the calculated linear eigenmodes to determine what each term in the 

model is doing and why.  This analysis reveals a feature of instability in the private flux region 

that, while mathematically well understood, is nonetheless physically counterintuitive. 

 

II Procedure 
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 3 

A. Simulation code 

 The computations in this article are performed using a code called ArbiTER.15  This code 

is described in more detail in the references, but is summarized here for convenience. 

 The ArbiTER code is a linear eigenvalue code.  That is to say, rather than simulating the 

evolution of plasma parameters through time, the code instead identifies dominant instability 

eigenmodes.  This is done by first discretizing the model equations for a given set of magnetic 

and plasma profile data.  This converts the model equations into matrix form, resulting in a 

generalized eigenvalue problem: 

 

      𝐴𝑥 = 𝐵𝜆𝑥    (1) 

 

 From here the matrix equation is passed to the SLEPc16 sparse eigensolver package.  The 

resulting eigenvector is then mapped to the coordinate system of the original partial differential 

equations. 

 In addition to ArbiTER, a number of Mathematica scripts are used to set up profile data 

and to visualize output data. 

 An important property of this code for the purposes of the current study is that, rather 

than returning a comprehensive list of eigenmodes, it instead returns some specified number of 

eigenmodes that are selected to have the fastest growth rates.  This is in part because it is based 

on a sparse eigenvalue solver, which unlike a full eigenvalue solver does not calculate all of the 

eigenvalues, but additionally because the number of eigenvalues is extremely high of which only 

a handful are of physical interest.  In the current study the number of eigenmodes selected is 

ten, but this can be adjusted based on the needs of the problem.  This is important as many of 

the features of this study are designed to regulate what kinds of instabilities make it into this 

top ten list.  It should be understood that even without these features these eigenmodes are 

still valid solutions of the matrix equation and can still be calculated, but may not be returned as 

answers for a given set of run-time parameters.  For this reason, special provisions must 

sometimes be made to ensure that eigenmodes of interest are not superseded by eigenmodes 

that are not the primary focus of the study. 

  

B. Coordinate system 

 This study uses a type of quasi-ballooning coordinates.  In this system, two different but 

related non-orthogonal coordinate systems are used: field-line following and geometric toroidal 

angle.  The field-line following coordinates are used to calculate parallel derivatives, whereas 

the geometric angle coordinates are used to calculate perpendicular derivatives.  This hybrid 

system allows the code to account for integrated magnetic shear without imposing a high radial 

resolution requirement. 

 The field line following coordinates are also used by BOUT17 and by most of the 

turbulence models built under the BOUT++18 framework.  They are also used by the predecessor 

of ArbiTER, the 2DX code19.  Field-line following coordinates as implemented here are discussed 

in greater detail in Sec. 3 of Ref. 18, or in Sec. 3 of Ref. 19.  This coordinate system is defined by: 
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 4 

    𝑥 = 𝜓 − 𝜓𝑠       (2) 

  

    𝑦 = 𝜃        (3) 

 

    𝑧 = 𝜁 − ∫ 𝑑𝜃 𝜈(𝜓, 𝜃)𝜃0      (4) 

 

where ζ is the toroidal angle, θ is a poloidal angle variable,  is the poloidal flux, and ν is the 

local safety factor.  In the geometric toroidal angle coordinate system, one modification is made: 

 

    𝑧′ = 𝜁       (5) 

 

 In both cases, toroidal symmetry allows the instability to be represented as a 

superposition of toroidal Fourier modes, that is to say, for an arbitrary perturbed quantity Q, we 

express 𝑄 = 𝑄𝑜(𝑥, 𝑦)𝑒𝑖𝑛𝑧 = 𝑄′0(𝑥, 𝑦)𝑒𝑖𝑛𝑧′ , where n is the toroidal mode number, and Q0 and 

Q’0 are representations of the instability waveform in the field-line following and geometric 

angle coordinate systems, respectively.  To interconvert between the two, the perturbed 

quantity is multiplied by an exponential 𝑒±𝑖𝑛𝐼, where 𝐼 = −∫ 𝑑𝜃 𝜈(𝜓,𝜃)𝜃0 .   

 In the context of the ArbiTER code, these two coordinate systems are combined by 

calculating the instability eigenfunction in the geometric angle representation, and re-defining 

the parallel derivative operators in order to convert to the field-line following coordinate system 

before calculating the parallel derivative and to convert back to geometric angle coordinates 

after calculating the derivative.  This results in an operator of the form: 

 

    𝜕∥𝑄𝐵𝑄 = 𝑒𝑖𝑛𝐼𝜕∥𝑒−𝑖𝑛𝐼𝑄     (6) 

where 𝜕∥𝑄 = �⃑� ∙ ∇(𝑄/𝐵). 

 These coordinates are used to define a number of geometric profile functions, in 

particular the binormal wavenumber 𝑘𝑏 = −𝑛𝐵/|∇𝜓| and the radial wavenumber 𝑘𝜓 =−𝑛𝜈∇𝜃 ∙ ∇𝜓/|∇𝜓|.  These definitions are used throughout this paper. 

 

C. Model equations 

 

 In this study, three models are used.  All of them are subsets of a 6-field Braginskii 

model17,20,21 describing, among other phenomena, resistive and drift-resistive modes.  There are 

a vast number of publications on resistive modes: two examples of early work employing similar 

equations are cited here.22,23  Much of the early work is devoted to relatively less collisional 

plasmas on closed flux surfaces, where growth rates are typically small.  More closely related to 

the present work is the fast resistive branch discussion by Novakovskii.24 

 The models considered in the present paper range from simple to more realistic, and by 

comparing these models it is possible to determine the level of physical realism needed to 

understand the principal dynamics of the plasma in the region of interest. 
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 5 

 The simplest of these models is a 3-field resistive ballooning model. 22,23,24  Its model 

equations are as follows: 

 

  𝛾∇⊥2𝛿𝜙 = − 𝐵2𝑛0 𝜕∥∇⊥2𝛿𝐴 + 2𝐵𝑛0 𝐶𝑟𝛿𝑃      (7) 

 

  𝛾𝛿𝑛 = −𝛿𝑣𝐸 ∙ ∇𝑛0       (8) 

 

  −𝛾∇⊥2𝛿𝐴 + 𝛾 𝑛𝛿𝑒𝑟2 𝛿𝐴 = 𝜈𝑒∇⊥2𝛿𝐴 − 𝜇𝑛∇∥𝛿𝜙     (9) 

 
where: 

 

  𝐶𝑟 ≡ �⃑� × 𝜅 ∙ ∇        (10)  

 

  𝛿𝑣𝐸 ∙ ∇𝑄 ≡ −𝑖 𝑘𝑏(𝜕𝑟𝑄)𝐵 𝛿𝜙       (11) 

 

  𝑣𝐸 ∙ ∇δ𝑄 ≡ −𝑖 𝑘𝑏(𝜕𝑟𝜙)𝐵 𝛿𝑄       (12) 

 

  𝛿𝑏 ∙ ∇𝑄 ≡ −𝑖 𝑘𝑏(𝜕𝑟𝐴)𝜇𝛿𝑒𝑟2 𝐵 𝛿𝑄       (13) 

 

  𝛿𝑃 ≡  (𝑇𝑖 + 𝑇𝑒)𝛿𝑛 + 𝑛𝑜𝛿𝑇𝑖 + 𝑛𝑜𝛿𝑇𝑒      (14) 
 

where  is the eigenvalue to be determined, kb is the binormal wavenumber,  is the 

ion/electron mass ratio, er is the skin depth, and Q is an arbitrary quantity. 

 This and the subsequent models use zero-value boundary conditions in the 

perpendicular direction, and sheath boundary conditions in the parallel direction.  The sheath 

boundary condition is defined by: 

 𝛿𝐽∥|𝑏𝑑𝑟𝑦 = −𝑠𝑛 𝑛𝑒2𝑐𝑠𝑇𝑒 𝛿𝜙       (15) 

 

where sn = bn = 1. 

 The next is a 3-field drift-ballooning model.17,20,25  This contains additional terms to 

incorporate drift wave physics, but retains ballooning terms.  These equations are as follows: 

 

  𝛾∇⊥2𝛿𝜙 = − 𝐵2𝑛0 𝜕∥∇⊥2𝛿𝐴 + 2𝐵𝑛0 𝐶𝑟𝛿𝑃      (16) 

 

  𝛾𝛿𝑛 = −𝛿𝑣𝐸 ∙ ∇𝑛0 − 𝜕∥∇⊥2𝛿𝐴      (17) 

 

  −𝛾∇⊥2𝛿𝐴 + 𝛾 𝑛𝛿𝑒𝑟2 𝛿𝐴 = 𝜈𝑒∇⊥2𝛿𝐴 − 𝜇𝑛∇∥𝛿𝜙 + 𝜇𝑇𝑒∇∥𝛿𝑛   (18) 
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 6 

 The last model is a four-field model.  It is based on a linearized subset of the STORM26 

turbulence model.  This subset neglects terms related to parallel velocity, as it is assumed that 

growth rates exceed parallel flow rates, i.e. 𝛾 ≫ 𝑘∥𝑐𝑠. These equations are as follows: 

 

  𝛾∇⊥2𝛿𝜙 = − 𝐵2𝑛0 𝜕∥∇⊥2𝛿𝐴 + 2𝐵𝑛0 𝐶𝑟𝛿𝑃      (19) 

  𝛾𝛿𝑛 = −𝛿𝑣𝐸 ∙ ∇𝑛0 − 𝜕∥∇⊥2𝛿𝐴 + 2𝐵 (𝐶𝑟𝛿𝑃𝑒 − 𝑛0𝐶𝑟𝛿𝜙)   (20) 

 

  𝛾𝛿𝑇𝑒 = −𝛿𝑣𝐸 ∙ ∇𝑇𝑒 + 23 𝜕∥𝜒∥(∇∥𝑇𝑒 + 𝛿𝑏 ∙ ∇𝑇𝑒)   

  + 2(1.71)𝑇𝑒3 𝜕∥𝛿𝐽 + 4𝑇𝑒3𝐵 ( 1𝑛0 𝐶𝑟𝛿𝑃𝑒 − 𝐶𝑟𝛿𝜙 − 52 𝐶𝑟𝛿𝑇𝑒)    (21) 

 

  −𝛾∇⊥2𝛿𝐴 + 𝛾 𝑛𝛿𝑒𝑟2 𝛿𝐴 = 𝜈𝑒∇⊥2𝛿𝐴 − 𝜇𝑛∇∥𝛿𝜙 + 𝜇𝑇𝑒∇∥𝛿𝑛  

 

  +𝑇𝑒𝜇𝛿𝑏 ∙ ∇𝑛0 + 1.71𝜇𝑛0∇∥𝛿𝑇𝑒 + 1.71𝜇𝑛0𝛿𝑏 ∙ ∇𝑇𝑒    (22) 

 

 

D. Numerical setup 

 

 The plasma profile functions and geometries used in this study are based on SOLPS27 

transport simulation models of MAST-U.  Two magnetic geometries are used, one for a 

conventional divertor and one for a super-X divertor.  These are shown in Fig. 1.  From this 

magnetic geometry data, a number of important derived profiles are calculated.  This includes 

poloidal flux (RBp), normal and geodesic curvature (n, ), integrated magnetic shear (I), and a 

variety of others. 

 Unlike the magnetic geometry, density and temperature profiles are modified from the 

original transport simulation data.  These modifications take a number of forms.  First, the 

profiles are chosen to be the same relative to the separatrix for both conventional and super-X 

configurations.  This ensures an apples-to-apples comparison between the resulting instability 

eigenmodes and their growth rates.  Second, the profiles have been flattened except in the 

private flux region.  This allows the eigensolver to focus on instabilities existing in this region, so 

that modes in other regions do not displace the modes of interest from the top ten fastest 

growing eigenmodes.  Third, the profiles are a parameter fit to a specified type of function 

rather than based on raw data; this ensures that the profiles are smooth enough to avoid 

spurious eigenmodes.  Fourth, a cosh function rather than an exponential is used for fitting the 

density and electron temperature profiles; this ensures that the density and temperature 

gradients are nearly zero at the radial boundary, thus preventing modes from localizing at the 

simulation boundary where the effects of boundary conditions on the eigenmode could be 

unphysical.  We note that experimental observations3-6 have so far revealed modes that do not 

appear to connect to radial boundaries, motivating our choice.  The results of these 

modifications are shown in Fig. 2. 
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 7 

 An additional modification that is applied to some but not all of the runs is curvature 

masking.  The purpose of this technique to suppress eigenmodes on the inner leg while having 

as little effect as possible on eigenmodes on the outer leg.  This is accomplished by changing the 

curvature profile function (i.e. the pre-calculated curvature functions passed to the ArbiTER 

code, as opposed to the actual curvature of the magnetic geometry) to zero below a certain 

major radius R.  This is applied to both normal and geodesic curvature, so it does not affect the 

relative importance of these terms.  In the cases in this paper where curvature masking is 

applied, this is done by zeroing out curvature at a radius less than .55 m.  Examples of this for a 

super-X divertor are shown in Fig. 3. 

 

 

IV Numerical results 

 

A. Comparison of models and instability types 

 

 The first matter to study is the types of eigenmodes that emerge from the above model 

equations under various circumstances.  The cases being compared are distinguished by three 

considerations: 1) conventional vs. super-X divertors, 2) curvature masking vs. no curvature 

masking, and 3) choice of physics model, i.e. resistive ballooning, drift-ballooning, or the 4-field 

model.  This results in a total of 12 different cases.  Each of these is performed at a resolution of 

128 grid points in both the x and y directions, and at a characteristic toroidal mode number of 

n=20.  The eigensolver is set to return the top ten fastest growing eigenmodes.  This results in a 

total of 120 eigenmodes to analyze.   

The results of this study are summarized in Table 1.  The first column is the case 

number, and the next three columns describe the parameters of the simulation, i.e. which 

model was used, which geometry was used, and whether curvature masking was in effect.  The 

next two columns describe the locations of the ten fastest growing eigenmodes.  The numbers 

in these columns give the order of the growth rate in the top ten list with 1 being the fastest. 

Eigenmodes localized to the inner divertor leg are listed in the inboard column, while 

eigenmodes localized to the outer divertor leg are listed in the outboard column.  The last 

column then lists the most unstable eigenvalue in inverse seconds, with the imaginary part 

being the frequency. 

 From this table it is clear that the behavior of the three models is qualitatively similar.  

Quantitatively, there are some significant differences.  In particular, the eigenvalues of the 

resistive ballooning model are distributed symmetrically with respect to frequency, whereas the 

eigenvalues from the other two models are not.  This is shown in Fig. 4.  From this it is apparent 

that resistive ballooning modes are replaced by drift or hybrid-drift modes in models where such 

modes are possible.  However, the growth rates of the resulting modes are not qualitatively 

different, and do not significantly affect the ordering of the eigenmodes. 

 The similarity between the models is significant for two reasons.  On one hand, the 

resistive ballooning model has curvature as its sole source of free energy.  That it is able to 

replicate the results of the other two models implies that the dominant instabilities in this 

regime are predominantly curvature driven.  On the other hand, the four-field model captures 

most of the essential physics of the linearized STORM model equations.  This suggests that the 

results from this ensemble of runs contains eigenmodes that are present in STORM 

simulations,26 and that are relevant to driving turbulence in that model. 
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 8 

 The importance of curvature drive in these instabilities is complicated by two more 

patterns in this ensemble.  First, the use of curvature masking is effective in removing all 

eigenmodes in the inner leg from the top ten list.  This demonstrates that the inner leg modes 

are curvature-driven, which is not surprising since the inner leg private flux is in a bad curvature 

region.  What is surprising is that there are outer leg modes available to take their place, 

regardless of the model equations used, despite the fact that the outer leg is in a good curvature 

region.  That these modes are in fact localized to the outer leg can be confirmed by viewing their 

amplitudes in the R-Z plane, as is shown in Fig. 5. 

 The other pattern is that, in the super-X configuration, the outer leg modes are strong 

enough to make the top ten list even when curvature masking is absent.  On one hand, this 

demonstrates an important difference between the behavior between the conventional and 

super-X divertors, thus making these results relevant to the comparison of these divertor types.  

On the other hand, it demonstrates that not only are outer leg modes present despite being in a 

good curvature region, but in fact are quite robust and able to compete with inner leg modes 

driven by bad curvature. 

 To resolve this conundrum, more detailed analysis of the structure of these eigenmodes 

and the underlying physics behind them follows. 

 

B. Analysis of outer leg ballooning instability 

 

 To understand the mechanism behind the outer leg instabilities in the RBM model, it is 

necessary to move beyond generalizations such as “good curvature” and “bad curvature” and to 
look in detail at the mathematical structure of the curvature terms themselves. 

 The curvature term in Eq. 7 can be broken down into components.  These components 

are given by the following equation: 

 

  𝐶𝑟 ≡ (𝑘𝑏𝜅𝑛 − 𝑘𝜓𝜅𝑔) − 𝑅𝑒(𝑖 𝜅𝑔𝑅𝐵𝑝𝜕𝑥) ≡ 𝐶𝑟𝑛 + 𝐶𝑟𝑔 + 𝐶𝑟𝑚    (23) 

 

where 𝑘𝑏 is the binormal wavenumber, 𝑘𝜓 is the radial wavenumber, 𝜅𝑛 ≡ 𝜅 ∙ �̂�𝜓 is the normal 

curvature, 𝜅𝑔 ≡ 𝜅 ∙ �̂� × �̂�𝜓 is the geodesic curvature, and 𝐵𝑝 is the poloidal field.  For purposes 

of the definitions of geodesic and normal curvature, �̂� is the magnetic unit vector and �̂�𝜓 is the 

flux surface normal. 

 In this framework, good or bad curvature corresponds to the sign of 𝜅𝑛 relative to the 

density gradient.  The remaining terms are less intuitive.  The value of 𝑘𝜓 can be arbitrarily 

redefined by changing the location at which the integration of magnetic shear begins; this 

change in 𝑘𝜓 is matched by an equal and opposite change in mode structure, which in this case 

affects the value of 𝜕𝑥.  In quasi-ballooning coordinates this issue is avoided as component of 𝑘𝜓 

due to magnetic shear is set to zero, and instead 𝑘𝜓 is determined by the degree of non-

orthogonality in the computational grid.  However, the mode structure is essentially arbitrary, so 𝑅𝑒(𝑖 𝜅𝑔𝑅𝐵𝑝𝜕𝑥) can potentially take either sign. 

 The actual value of 𝐶𝑟𝑚can be calculated based on the calculated mode structure.  In 

particular, since the curvature operator is applied to 𝛿𝑛 in Eqs. 7 and 16, one can write 𝐶𝑟 ≡𝐶𝑟𝛿𝑛/𝛿𝑛, from which the value of 𝐶𝑟𝑚 can be calculated as 𝑅𝑒 (𝑖 𝜅𝑔𝑅𝐵𝑝𝜕𝑥𝑙𝑛(𝛿𝑛)).  This allows 

all of the components of curvature, regardless of whether they depend on mode structure, to be 

compared on equal footing. 
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 9 

 The results of this calculation are shown in Fig. 6.  Here the three components of the 

curvature drive are compared, as well as their total.  In this instance, the normal curvature term 

is positive near the eigenmode peak, which corresponds to good curvature.  However, the 

contribution from mode structure, as well as the total, are both negative, i.e. destabilizing.  The 

first part is not surprising given the orientation of the pressure gradient and toroidal curvature 

and the position of the mode within the divertor channel.  However, it is still significant because 

it rules out a more conventional sort of curvature-driven instability, such as those described in 

Refs 7 and 8.  The reversal of total curvature drive due to geodesic curvature is strongly 

dependent on radial mode structure.  This implies that mode structure is critical to this type of 

instability, and also implies that it is not included in any model that does not account for radial 

mode structure. 

 An example of an eigenmode that displays this effect is shown in Fig. 7.  In this figure, 

the real and imaginary parts of the eigenmode at a specific poloidal position are plotted versus 

flux surface.  This shows a mode structure that is oblique with respect to the flux surface, i.e. 

plasma is being interchanged along an axis that is predominantly tangential rather than normal 

to the flux surface.  The significance of this will become apparent in the discussion of theory. 

 

C. Mode number scan 

 

 In order to ensure that the toroidal mode number produces a mode that is 

representative of turbulent behavior in the region of interest, a growth rate spectrum in toroidal 

mode number is needed. 

 Several such spectra are shown in Fig. 8.  In the case of the conventional divertor with 

no curvature masking, this shows a characteristic "knee" around n=15.  In all other cases, growth 

rates increase slowly with toroidal mode number.  While results from the resistive ballooning 

model do not exhibit a toroidal mode number where the growth rate is maximized, they do 

exhibit a broad plateau in growth rates.  Since n=20 is clearly in this plateau for all cases 

considered, it is reasonable to take these results as typical for this type of instability in the 

region of interest.  In reality, it is expected that the mode number spectra will maximize at a 

finite value of n beyond which ion diamagnetic drifts and dissipation start to dominate.  These 

effects are difficult are difficult to model quantitatively in the divertor region without 

experimental data on neutral density and ion temperature; consequently, this has not been 

attempted here. 

 

D. Convergence testing  

 

 In order to ensure that the computational grid has sufficient resolution in both the x and 

y directions, a convergence study was performed.  This was done using an RBM case in super-X 

geometry with no curvature masking.  This was chosen in order to observe the convergence of 

both inner and outer leg instabilities.  Resolution was increased until further resolution 

produced no qualitative change in the distribution of eigenmodes, and then stopped at the 

previous value.  These results are shown in Figs. 9. 

 These results show a threshold in y resolution above which the eigenmodes display 

mode twinning, i.e. for each eigenmode located in the upper divertor leg, there is a 

corresponding eigenmode in the lower divertor leg with a similar growth rate.  The lack of this 

twinning at low resolution can be explained by the procedure by which the computational mesh 

is generated; grid points are chosen to be evenly spaced along the separatrix, however because 

the length of each region of the flux surface does not evenly divide the poloidal grid spacing, 
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 10 

grid points have different positions with respect to the upper x-point than the lower.  At 

sufficiently high grid resolution, this difference is sufficiently small for mode twinning to occur.  

It therefore provides a convenient test of resolution adequacy. 

 In x resolution, the study shows that inner and outer leg modes converge at significantly 

different resolutions.  This creates problems due to the fact that in the highest resolution cases, 

additional resolution is achieved by reducing the size of the domain and keeping the number of 

grid points fixed, rather than increasing the number of grid points.  Because the outer leg modes 

are wider in radial extent than the inner leg modes, this means that the domains on which the 

inner leg modes are resolved are too narrow to simulate the outer leg modes.  Since the modes 

of interest to this study are in the outer leg, a resolution suitable for convergence of outer leg 

modes was used despite the failure of outer leg modes to converge at this resolution. 

 

V Theoretical analysis 

 

 The presence of curvature driven ballooning modes in regions of good curvature may at 

first seem counterintuitive, but in fact this is predicted by established stability theory.  The 

importance of geodesic curvature is noted by Coppi,28 as far back as 1966 and its role has been 

discussed in later works.293031 

 With the exception of Refs. 9 and 31 the earlier works consider closed surface edge 

plasmas which are relatively less collisional than considered here.  As a result, modes are greatly 

extended along the field lines, wrapping poloidally many times around the torus.  A two-scale 

analysis in the extended ballooning coordinate is usually performed.  In Ref. 31 flute modes 

subject to sheath boundary conditions on a limiter in the scrape-off layer are considered in a 

model geometry where the geodesic curvature effects provide the drive because the normal 

curvature averages to zero. 

 Because the situation we consider here is quite different from those previous studies, it 

is helpful to review the underlying mechanism of these geodesic curvature instabilities in a 

concise manner that is relevant to the current modes of interest.  The destabilizing contribution 

of geodesic curvature on flute modes in the private flux region was contained in Eq. (16) of Ref. 

9, although the mechanism was not discussed in detail there. 

 The mechanism behind these modes can be understood by looking at a simpler 

problem, that of MHD instability in slab geometry in the local eikonal limit.  In this case, the 

mode structure can be reduced to a sinusoidal function with a definite wavevector k.  This can 

be described by the following dimensionless equations: 

 

   𝛾∇⊥2𝛿𝜙 = 2𝐵𝑛0 𝒃 × 𝜅 ∙ ∇𝛿𝑃     (24) 

 

   𝛾𝛿𝑛 = −𝑖𝛿𝜙(𝒃 × 𝒌 ∙ ∇𝑛)     (25) 

 

 For the cold ion case with isothermal Te, this yields the formula for : 
 

   𝛾2 = 2𝐵𝑛0 (𝒃×𝒌∙𝜅)(𝒃×𝒌∙∇𝑛)𝑘⊥2       (26) 

 

 Note that in this equation only the component of wavenumber perpendicular to the 

magnetic field matters.  This corresponds to the two degrees of freedom in Eq. 23, one from the 
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toroidal mode number, which determines kb and k, and one from the eigenmode structure in 

the radial (i.e. 𝒆𝜓) direction.  

 This growth rate is maximized over the orientation of k when the term  𝐹 ≡ (𝒃 × 𝒌 ∙ 𝜅)(𝒃 × 𝒌 ∙ ∇𝑛) is maximized.  To calculate when this will occur, let 𝒒 =𝒃 × 𝒌/|𝒃 × 𝒌|.  Then the above term can be rewritten as: 

 

    𝐹 = (𝒒 ∙ 𝒆𝑅)(𝒒 ∙ 𝒆𝜓)     (27) 

 

where 𝜅 ∝ −𝒆𝑅 and −∇𝑃 ∝ 𝒆𝜓 = 𝑒𝑅 cos 𝜃 + 𝑒𝑍 sin 𝜃.  Now let 𝒒 = 𝑒𝑅 cos𝜑 + 𝑒𝑍 sin 𝜑.  In this 

case,  

 

  𝐹 = cos𝜑 (cos 𝜑 cos 𝜃 + sin𝜑 sin 𝜃) = cos𝜑 cos(𝜑 − 𝜃)  (28) 

 

which is maximized when: 

 

     𝜑 = 𝜃/2     (29) 

 

 This result has several implications.  The first is that, except in the case of perfect good 

curvature where 𝜃 = 0, there will always be a possibility of curvature-driven instability.  The 

second is that, the further a flux surface is from perfect good curvature, the stronger the 

instability drive will be.  The third is that, in order to exploit this instability drive, the 

wavenumber must be at an angle to the flux surface tangent. 

 All of these implications are evident in the instabilities observed here.  First, an 

instability is observed regardless of good or bad curvature.  Second, the instability is stronger in 

the super-X divertor, where flux surfaces are nearly horizontal and therefore the flux surface 

normal vector is nearly perpendicular to the curvature vector.  Third, the eigenmode has an 

oblique structure, as shown in Fig. 7.  Thus, despite their counterintuitive appearance, these 

instabilities are behaving exactly as analytic theory predicts. 

 

VI Conclusions 

 

 In the present paper, the stability of the private scrape off layer in the divertor legs of 

two different spherical tokamak configurations is examined using three physics models.  This 

reveals the presence of a curvature-driven instability in the private flux region of the outer 

divertor leg.  This instability is driven by geodesic rather than normal curvature, allowing it to 

exist in what is conventionally considered a good curvature region.  The nature of this mode is 

revealed both by comparison of different models and test cases, as well as by detailed analysis 

of its underlying mode structure.  This reveals an instability that, despite its initially paradoxical 

appearance, is readily explained by analytic theory. 

 The presence of this instability is particularly noteworthy given that it is significantly 

stronger in a super-X divertor than in a conventional divertor.  This makes this instability 

important with respect to possible implications for the heat flux widths of these divertor types, 

in particular indicating that the super-X divertor may spread out divertor heat flux not only due 

to the effect of magnetic geometry, but also its effect on scrape-off layer stability.  The presence 

of this effect suggests that geodesic curvature driven modes should be taken into account in 

future comparisons of advanced divertor designs.  This also has implications for the designs 
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 12 

themselves, as it suggests that heat flux width might depend not only on flux expansion, but also 

on the orientation of the flux surface along its path to the divertor plate. 
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Figures 

 

 

ab cd 

 

Figure 1: Sample magnetic flux surfaces for the conventional divertor configuration (a) and 

corresponding SOLPS grid (b), and super-X configuration (c) and SOLPS grid (d).  [Associated 

dataset available at https://doi.org/10.5281/zenodo.5111014]32 

 

 

 

a 

 

b 

c 

 

Figure 2: Density (a), electron temperature (b), and ion temperature (c) profiles.  [Associated 

dataset available at https://doi.org/10.5281/zenodo.5111014]32 

 

  

a     b 

Figure 3: Normal curvature in R-Z coordinates for a super-X divertor without (a) and with (b) 

curvature masking.  [Associated dataset available at https://doi.org/10.5281/zenodo.5111014]32 

 

Case Model Geometry Masking Inboard Outboard Leading eigenvalue (s-1) 

1 RBM super-X no 1-4,7-8 5-6,9-10 78131.5 - 35.3525 I 

2 RDW super-X no 1-6,9 7-8,10 90015.8 - 6697.16 I 

3 4 field super-X no 1-6,8 7,9 90281.6 - 17206.8 I 

4 RBM conventional no 1-10  92269.7 + 22.4386 I 

5 RDW conventional no 1-10  104227. - 5664.43 I 

6 4 field conventional no 1-10  102849. - 16784.4 I 

7 RBM super-X yes  1-10 64820.8 - 6231.77 I 

8 RDW super-X yes  1-10 64434.1 + 2283.01 I 

9 4 field super-X yes  1-10 65677. - 1358.07 I 

10 RBM conventional yes  1-10 25980.7 + 520.565 I 

11 RDW conventional yes  1-10 34907.5 - 4975.13 I 

12 4 field conventional yes  1-10 36149.5 - 10330.7 I 

 

 

Table 1: physical locations of eigenmodes for a complete set of models and grids. 

 

 

 

a) curvature masking, conventional    b) no masking, super-X 

 

Figure 4: Distribution of eigenvalues for two different runs in the parameter scan.  [Associated 

dataset available at https://doi.org/10.5281/zenodo.5111014]32 
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a      b 

 

Figure 5: location of eigenmodes in RZ coordinates, for RBM super-X no masking, mode 5 (a) and 

for RBM conventional with masking, mode 1 (b).  [Associated dataset available at 

https://doi.org/10.5281/zenodo.5111014]32 

 

 

 

 

 

Figure 6: Curvature drive term as a function of distance in the R-Z plane along the flux surface of 

the mode peak for the eigenmode in Fig. 5a, with negative values destabilizing.  [Associated 

dataset available at https://doi.org/10.5281/zenodo.5111014]32 

 

 

 

 

Figure 7: Radial mode structure of density fluctuations for eigenmode in Fig. 5a as a function of 

distance in the R-Z plane at the poloidal position of the mode peak.  [Associated dataset 

available at https://doi.org/10.5281/zenodo.5111014]32 

 

 

 

 

 

Figure 8: growth rate as a function of toroidal mode number for a number of cases.  [Associated 

dataset available at https://doi.org/10.5281/zenodo.5111014]32 

 

 

  
scan in y resolution    scan in x resolution 

 

Figure 9: convergence testing.  Red points indicate inboard localized modes, blue points indicate 

outboard localized modes.  Note that for x resolutions over 512 the listed resolution is the 

effective resolution at the original domain size, whereas the actual domain size is reduced.  

[Associated dataset available at https://doi.org/10.5281/zenodo.5111014]32 
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