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A reduced electromagnetic (EM) model for convective blob transport in the scrape-
off-layer (SOL) is developed in which the density is naturally normalized to a 
parameter which has the same B/qR dependence as the Greenwald-Hugill density 
limit.  The model produces qualitative effects which are reminiscent of observed 
phenomena, but at densities which are well above the experimental density limit 
 

Recent advances in the experimental diagnosis and first principles simulation of edge 
and SOL plasma in tokamaks and other toroidal devices suggest the importance and possible 
relationship of convective transport, strong nonlinearities giving rise to intermittency,  and 
the emergence of coherent turbulent structures.  Here, we build on Refs. 1 and 2 by 
generalizing the convective blob transport model to include electromagnetic (EM) effects and 
investigate how they are related to experimentally observed changes in the SOL near the 
density limit.3,4 

In the SOL we estimate the sheath current5 as J|| ~ ne2csφ/T and employ it in 
Ampere’s law A|| ~ 4πJ||/ck⊥2 to obtain A|| ~ ωpi

2φ/(ccsk⊥2).   Further employing k⊥ρs ~ ε and 
ω/Ωi ~ ε2 where ε is an ordering parameter, EM effects will be significant when A|| ~ 
(k||c/ω)φ which implies 

 2
is||L δ=ρ  (1) 

where L|| is the field line length between the plates in the SOL and δi = c/ωpi is the ion skin 

depth.  Here k⊥ and ω are a typical wavenumber and frequency, k|| ~ 1/L||, ρs is the ion 

Larmor radius based on the sound speed cs, and Ωi is the ion cyclotron frequency. 
Equation (1) gives the characteristic density at which EM effects enter as ne = 5.06 × 

1020 µ1/2B/(L||T1/2) where the units are n(m-3), µ(proton mass), B(T), L||(m) and T(eV).  If 
we take typical values near the last closed flux surface (LCS), T = 30 eV, L|| = qR and µ = 2, 
we obtain 

 
qR

B
1031.1n 20

0e ×=  (2) 

This is similar to the well-known Greenwald-Hugill density limit6,7 for the average density 

of a (here circular) plasma, where the coeff icient 1.31 → 1.6.  The correspondence requires 

that near the density limit the density at the LCS becomes comparable to the average density, 

i.e. the profile must become broad.  While the T scalings are not identical, the departure in 

LCS temperature from 30 eV between different machines and operating conditions is small 

compared with the variations in B/qR. 
The formal derivation is based on the vorticity and continuity equations, Ohm’s and 

Ampere’s laws and sheath boundary conditions in the SOL. These equations involve the 
electrostatic potential φ, the density n, the current J|| and vector potential A||.  Next, we 
employ an ansatz to eliminate the dimension along the field lines 
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 22
0 L/zψ−φ=φ  (3) 

where z is the coordinate in the parallel direction and φ0 and ψ are functions of the 

perpendicular coordinates x and y.  Neglecting polarization drifts, the resulting equations may 

be written in the dimensionless form 
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where the normalizations are as follows: n to ne0 of Eq. (2), φ and ψ to e/T, space and time to 

ρs and Ωi respectively.  In Eqs. (4)-(6) and following the subscript 0 on φ0 is suppressed.  

Here the toroidal curvature is –ex/R and q = L||/R.  Equation (4) is the vorticity equation 

which balances sheath currents on the left with the pressure-weighted curvature on the right. 

Here p = 2nT with T = const.  Equation (5) is Ampere’s law combined with the expression 

for the sheath current, while Eq. (6) is the continuity equation including parallel particle loss 

given by α = 2√2ρs/L||.  For densities well below the density limit, n << 1, ψ can be neglected 

and Eqs. (4) and (6) reduce to the electrostatic (ES) blob model considered in Refs. 1 and 2.  
Neglecting the small α term in Eq. (6) (which describes blob decay but is not 

important for blob convection), the only parameters in this model are the value of the density 
(normalized to the density limit) and q.  Thus, any predicted “density limit” phenomena have 
a degree of universality built in. 

For a preliminary examination of the role of EM effects, our 2D equations are 
reduced8 to 1D (in the radial coordinate x) by projecting onto two Fourier modes ky = 0 and 
k. Letting kycosn~nn += , etc. and y

~g~ ψ=  yields 
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Even this simple model retains the physics of convecting blobs.  In particular, 
considering the ES limit n, g << 1, the ansatz n2n~ 2/1=  solves Eqs. (7) and (8) for an 
arbitrary function n(x−vt), where the blob velocity v = k2q is in agreement with the Gaussian 
blob solution of Ref. 2 if we identify k = 1/rb with rb the Gaussian blob radius. 

The 1D system possesses a scaling invariance which is exhibited by the 
transformation t′ = αt, x′ = αx/(k2q), )qk/(g~g~ 2=′ , α=′ /qknn 24 , α=′ /qkn~n~ 24 , and k′ = 
k3q/α.  The primed variables (with primes suppressed) are employed in the results which 
follow. 
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The 1D scaled equations have an exact steady state exponential solution, 
)xexp(nn 0 −= which balances radial convection and parallel losses. This solution describes 

an ensemble of radially convecting blobs, each of which decays at a rate exp(−t′) in its own 
frame, to give rise to an overall exponentially decaying profile.  The characteristic SOL scale 
length is k2q/α in the original variables.  Note that although the solution is a “equil ibrium” 
solution of the 1D model, both n~ and nare involved.  The solution is not independent of y. 

Although the exponential solution solves the system for all value of 0n , a detailed 
analysis shows that this solution is only stable for small 0n .  To explore this, we have time 
evolved Eqs. (7) – (9) numerically until a steady state results.  Figure 1 shows an example of 
the results for two different separatrix densities.  In the low density case, the single SOL 
exponential solution is recovered.  In the higher density case, a double-scale-length SOL 
solution results.  In the steep inner SOL, this solution is diffusion dominated (a small 
diffusion term is added to the equations for numerical evolution), while in the outer broad 
SOL, convection dominates.  At even higher densities, an MHD unstable regime is eventually 

encountered. 
We have also studied the response of the 

system to time-dependent forcing terms of the 
form )tcosA1(nn 000 ω+= applied at the separa-
trix boundary.  When 00n is well below the 
critical density, the plasma response is rather 
linear looking, as seen in Fig. 2a) for the density 
n(t).  In this figure, the time histories are shown 
at four fixed spatial locations (probes).  The flux Γ 
= nv, not shown, is similar to the density since v 
= 1 in this case. As 00n approaches a critical 
density, strong nonlinearities appear in the 
responses shown in Figs. 2b) and 2c).  The flux 

becomes spiky, and the density shows a marked steepening of the leading edge.  The first 
oscillation arrives nearly simultaneously (v >> 1) on all probes in Fig. 2b) while there is a 
measurable time delay (consistent with v = 1) in Fig. 2a). Although convection is transiently 
enhanced, there is no increase in the time-averaged radial fluxes because v is suppressed 
below 1 for part of the cycle. 

Note that in the dimensionless units of this paper the MHD stabili ty parameter is αmhd 
= nq/Ln thus αmhd = 1 implies n = 1/kq if Ln → 1/k gives the characteristic length scale of an 
isotropic blob.  In the present model, we can interpret the density limit as an MHD instabili ty 
limit for blobs or turbulent structures as opposed to the average SOL profiles. 

 Finally, it can be shown that Eq. (7) – (9) possess an analytic 1D shock solution in 
which nand n~ jump discontinuously at the shock front while g is continuous.  The shock 
velocity is 
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Fig. 1  Steady state solutions of the 
model Eqs. (7) – (9) for two values of 
separatrix density n0. 
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where N is the density jump.  This solution shows the 

existence of a critical density where the convective 

velocity becomes large.   
The singular change in character of the 

solutions seen in Figs. 1 and 2 near a critical density is 
likely associated with the absence of the polarization 
drift term in the corresponding 1D model equations.  
We are presently investigating the solutions of the full 
2D equations retaining the polarization drifts. So far, 
we have not seen any signatures of a density limit in 
the 2D simulations.  Work in progress is investigating 
the role of the polarization drift term in these findings.   

It is interesting that the density limit scaling 
arises naturally from the model when (i) the 
polarization drift term is neglected, and (ii) the natural 
time and space scales are Ωi and ρs.  Is it possible to 
simultaneously satisfy these requirements?  One hope 
would seem to be in nonlinear solutions which 
annihilate the polarization drift term.  Convecting 
structures, such as shocks, which are steady state in a 
moving frame offer the possibility of cancellation of 
the t/ ∂∂  and ∇⋅v  terms 

In conclusion, we have investigated the role of 
electromagnetic effects on blob convection in the SOL 
and its relation to the density limit.  The model 

produces qualitative effects which are reminiscent of the experimentally observed phenomena 
of increased convection, intermittency, and a double-scale-length SOL, as the density limit is 
approached. However, in its present form, the model exhibits interesting behaviors at critical 
densities which greatly exceed the density limit unless the scales sizes of the blobs are ρs and 
Ωi. In that case the neglect of the polarization drift must be justified.  Nonetheless, it is hoped 
that the model may contain some of the correct physical ingredients necessary for an eventual 
understanding of the density limit. 
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Fig. 2  Response of the plasma to a 
sinusoidal driving perturbation.  a) 

)t(n for the low density case, b) )t(n  
for the high density case, and c) flux 
Γ(t) for the high density case. 


