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Abstract 

An analytic theory of the resistive X-point (RX) mode in the edge region of a 

diverted tokamak is developed by employing an outgoing-evanescent wave boundary 

condition along the field lines.  This result is employed to deduce a new categorization of 

edge instabilities in the presence of X-points.  A regime diagram shows the relationship 

of the RX mode to the ideal and conventional resistive ballooning modes.  In addition to 

describing growth rates of linear instabilities, the analysis also yields regimes and 

scalings for nonlinear convective “blob” propagation velocities.  The regime diagram and 

a knowledge of experimental and BOUT code simulation results, suggests that the quasi-

coherent mode seen in the Alcator C-Mod tokamak [M. Greenwald et al., Phys. Plasmas 

6, 1943 (1999)] can be classified as an electromagnetic RX mode.  Analytical scalings for 

the existence of this mode compare well with experimental trends, as does the solution of 

a model radial eigenvalue problem.  Finally, using a finite Larmor radius assumption to 

eliminate the perpendicular wavenumber, the instability regime diagram can be converted 

to an edge phase space diagram.  X-point physics adds a new region to this edge 

parameter space that is postulated to be the enhanced D-alpha (EDA) regime. 

 
PACS:  52.55.Fa, 52.35.-g, 52.35.Qz 
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I. Introduction 

The importance of edge physics for the success of the tokamak fusion effort is 

being increasingly recognized. Large simulation codes will likely play a dominant role in 

exploring the nonlinear physics of edge turbulence and transport.  In this environment, 

simple analytical models to clarify edge instability parameter regimes, and identify 

important transitions in parameter space, will fill a critical need for verifying code 

behavior, elucidating the underlying physics, and identifying promising regimes for 

experiments and simulations to explore.  The goal is of this paper is to present such a 

model for curvature-driven instabilities in the collisional edge and scrape-off-layer region 

of a diverted tokamak.  The focus will be to clarify the role of X-points on edge 

instabilities, and note the implications of X-point physics for understanding the quasi-

coherent mode observed in the Alcator C-Mod tokamak.1-3 The model may also be 

relevant to certain types of quasi-coherent mode activity observed on DIII-D4 and other 

tokamaks during quiescent periods in high-performance discharges. 

Figure 1 illustrates schematically the basic instability physics under 

consideration.  Curvature drives charge separation and currents flow in response.  The 

instability regime is controlled by the topology of the resulting current loops, i.e. where 

they close.  Possibilities include closure of the current at an end sheath [if the field line is 

in the scrape-off-layer (SOL)], or by perpendicular polarization currents near the 

midplane, or in the X-point region, where the flux tubes become thin elongated fans5 and 

cross-field current flow is greatly eased.  The path of least resistance will depend on the 

parallel resistivity as well as other parameters to be identified.   

The conventional regimes of ideal strong ballooning (IB), resistive ballooning 

(RB) and connected (C) (or sheath-interchange, depending on whether the field lines are 

open or closed) are well understood and can be described by taking the extreme limits of 
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either localized or extended flute-interchange eigenfunctions along the field line.  

Instabilities whose properties depend on X-point geometry have also been studied,6-8 but 

until now a simple analytical model description has not been available. This model and 

its implications are the subject of the present paper. 

To understand the resistive X-point (RX) regime conceptually, we consider the 

model drift-resistive ballooning equation (see e.g. Ref. 6) for the perturbed potential Φ ~ 

exp(ik⋅x−iωt) 
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This equation is obtained from linearized equations of vorticity and continuity 

supplemented by a Braginskii-type Ohm’s law and an Ampere’s law.  For simplicity, Eq. 

(1) neglects fluctuations in Ti and Te and ignores electron inertia.  The latter effect may 

be retained by the substitution iωη → iωη + ω(k⊥δe)2.  Furthermore, we work in the E×B 

drift frame.  Here, notations are standard and defined in full in Ref. 6.  For convenience, 

we recall that va2 = B2/4πnm is the square of the Alfvén velocityi, ωη = νe(k⊥δe)2 is the 

magnetic diffusion frequency where δe = c/ωpe, ω*j = kyv*j (j = i, e) are the species 

diamagnetic drift frequencies, and γmhd2 ~ cs2/(RLn) is the curvature drive.  Occasionally 

we will use the notation x for radial, and y for binormal (approximately poloidal) 

projections, with k⊥2 = kx2 + ky2.  In Eq. (1), it is well-known that k⊥ = k⊥(s) due to 

magnetic shear and poloidal field variation (see for example Ref. 7 and references 

therein) where s is the coordinate along the magnetic field, and ∇|| = d/ds.  Typically (for 

the fastest growing mode) k⊥(s) has a minimum near the midplane and is a rapidly 

growing function. 

The RX regime contrasts with the usual limits taken for resistive ballooning 

modes.9  At the highest collisionalities or wavenumbers for which ωη → ∞, the fast 

resistive modes are localized near the outboard midplane where the curvature term is 
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strongest. Consequently these modes do not experience the X-point region.  These fast 

RB modes are susceptible to stabilization by diamagnetic effects, particularly in high 

performance tokamak plasmas.  At lower collisionalities or wavenumbers, two-scale 

resistive ballooning models apply in circular flux surface geometry, and have been 

employed to describe edge modes.10  The two-scale model relies on asymptotic matching 

in the extended ballooning coordinate θ.  However, the asymptotic region θ >> 1 is 

seldom attained in X-point geometry because, as discussed subsequently, most modes 

decay on a single transit of the field line through the X-point region. 

The important X-point physics in Eq. (1) comes from magnetic diffusion, ωη ~ η|| 

k⊥2, and shear-enhanced ion polarization currents ~ k⊥2 ( ω − ω*i).  Near the X-points, 

the local magnetic shear becomes large and the poloidal field becomes small, Bθ → 0, 

making k⊥ a strong function of distance along B.5  The two-scale model for resistive 

ballooning modes fails and instead, the mode physics transitions suddenly (at θ ~ 1) from 

ideal to resistive. As ωη ∝ k⊥2 rises precipitously, the eigenfunction Φ resistively 

disconnects at the X-points.7  Examination of the parallel Poynting flux shows that wave 

energy propagates from the midplane region into the X-points.7   This observation 

suggests the use of an outgoing wave boundary condition in the parallel direction.  In 

Sec. II, we show how to employ a slight modification of a previously derived11 outgoing-

evanescent wave boundary condition to describe the essential X-point physics.   This 

boundary condition enables an analytic theory of the RX mode in the radially local 

approximation and extends and clarifies previous numerical studies.6-8  

In Sec. III, we employ this result to understand the competition of terms in the 

ballooning equation, viz. in what spatial regions (midplane or X-point) each term is 

important, as a function of wavenumber, collisionality and strength of the curvature 

drive.  Balancing terms pair-wise gives the essential dimensionless parameters of our 

edge stability model, and determines regions in parameter space where transitions of the 
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dynamics can occur. These are identified first in a parameter space that includes 

wavenumber k⊥ for linear modes (or blob radius ab for nonlinear convection).  This 

allows comparison of RX and conventional resistive and ideal (RB and IB) ballooning 

modes and gives a general diagram illustrating the regimes where each mode is 

dominant.  This diagram is useful for linear instabilities, but importantly also gives 

nonlinear blob propagation regimes, and scalings for blob convection velocities that can 

be tested experimentally.  These are obtained by invoking a convective nonlinearity 

ansatz for the blobs. 

In Sec. IV we make a postulate for the regime appropriate to the quasi-coherent 

(QC) mode, viz.¸ that it is a electromagnetic resistive X-point mode (RX-EM).  Scalings 

are developed for its existence and compared with C-Mod experimental results.   We also 

employ the theory to develop, then solve, a model radial eigenvalue equation for the QC 

mode. 

Finally, in Sec. V, invoking finite Larmor radius (FLR) physics (i.e. diamagnetic 

drift stabilization) to eliminate k⊥, the important dimensionless parameter transitions are 

converted to the (αmhd, αd) edge phase space,12 now including X-point effects.  The 

result gives scalings which elucidate the QC mode and enhanced D-alpha (EDA) 

regimes.  Our conclusions are summarized in Sec. VI. 

II. Analytic theory of resistive X-point modes 

A. Outgoing-evanescent wave X-point model 

In Ref. 11, Ryutov and Cohen proposed the use of an outgoing-evanescent wave 

boundary condition to model X-point effects for instabilities localized to the divertor 

region.  Here we make use of a similar idea, for the midplane-side RX modes, retaining 

diamagnetic drift physics and employing the cross-field ion polarization current (instead 
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of the collisional perpendicular electron conductivity used in Ref. 11) to close the current 

loops across the thin flux-tube fans of the X-point region. A related outgoing-evanescent 

wave model was employed earlier to show that drift-waves in X-point geometry are 

unstable,13 in contrast with the circular-flux-surface result. 

Our model has two regions along the field lines: the midplane region (in which all 

parameters in the ballooning equation are constant) and the X-point region. The midplane 

region, of half length L||, includes inertia, curvature drive, and parallel current (charge 

flow) and is described by integrating the ballooning equation along B from the midplane 

to the X-points to obtain 

 0
J

Lk

vi
)( bc||

||
2
s

2
a2

mhdi =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Φρ

ω
+γ+ω−ωω

⊥
∗  (2) 

Here, the parallel current J|| and potential Φ are normalized to neva and Te/e respectively. 

J||bc is the parallel current boundary condition connecting the midplane and X-point 

regions and is given, at the entrance to the X-point region by 
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The X-point region itself includes resistive line bending (with magnetic 

diffusion), and inertia (from the ion polarization current): 
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This equation is solved for a model profile of k⊥(s), subject to the condition that solutions 

decay beyond the X-point. For validity of the fully disconnected limit, Φ is assumed to 

vanish before reaching the divertor plate in the SOL, or before self-connecting around the 

tokamak on closed flux surfaces.  This “disconnection” condition will be given in Eq. (8).  

Once Eq. (4) is solved in the X-point region, ∇|| ln Φ is computed at the entrance to the 
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X-point region, and substituted into Eq. (3).  Equations (2) and (3) then give the 

dispersion relation for RX modes. 

B. Solution in the WKB limit 

Analytic solutions of Eq. (4) are possible in the Wentzel-Kramers-Brillouin 

(WKB) approximation, and in the “Born” limit.  We present the WKB limit here, and 

consider the more complicated Born limit in Appendix A.  Converting ∇|| → ik|| in Eq. 

(4), solving for k|| and combining with Eqs. (2) and (3) one obtains the RX mode 

dispersion relation 
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Here, ωa = va/L|| and midplane inertia ω(ω − ω*i ) << γmhd2 has been dropped. Detailed 

analysis (not reproduced here) verifies that the unstable branches of Eq. (5) indeed 

correspond to legitimate (outgoing and/or evanescent) eigenmodes asymptotically in the 

X-point region for the consistent choices of the square root determining k||.  All quantities 

here refer to midplane values (since they arise from the entrance to the X-point region).  

The WKB outgoing-evanescent wave boundary condition has no knowledge of properties 

interior to the X-point region: no interior information is transmitted back the midplane 

since there is no reflection in the WKB limit. 

Equation (5) represents a mode driven by curvature from the midplane region 

balancing inertia from the X-point region.  Typical growth rates scale as ω ∼ γmhd2/ωa so 

that midplane inertia is negligible for γmhd2/ωa2 << 1, which we will see is one of the 

boundaries of the RX mode regime. The RX mode has two sub-limits.  In the 

electromagnetic (RX-EM) limit, ωη << ω, the boundary condition Eq. (3) describes an 

outgoing Alfvén wave, a limit considered previously for pellets14 and blobs15 and 

reduces to 
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In the opposite, electrostatic (RX-ES) limit, ωη >> ω, the X-point boundary condition 

reduces to that of an evanescent resistive ballooning mode, yielding the dispersion 

relation 
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III. Edge instability and blob transport regimes 

A. Linear instability regimes 

In this section, we apply Eq. (1) for the ideal and resistive ballooning modes in 

the midplane region, and Eqs. (2) – (4) for the resistive X-point modes.  The 

characteristic frequencies are ωη, γmhd, ωa, and ω*j.  We begin by neglecting drift effects, 

re-introducing them later. Thus, the reduced system may be characterized by the 

dimensionless parameters X = ωη/ωa describing collisionality and wavenumber, and Y = 

(γmhd/ωa)2 describing the strength of the curvature drive.  Again, in this section, all 

quantities refer to midplane values, unless otherwise noted.   

In addition, there is a condition that the modes “disconnect” across the X-point 

region.  In the WKB limit, this condition is 

 1)s(kImds || >∫  (8) 

where the integral is taken across the X-point region, up to the divertor plate.  Estimating 

k|| from Eq. (4) and defining Ld to be the length of the integration region, the 

disconnection condition becomes 
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Here, <…> indicates a field line average over the X-point-divertor region, and ωη0 in 

Eq. (9), and k⊥0 in Eq. (10) emphasizes mid-plane values (i.e. entrance to the X-point 

region), although for notational consistency, we henceforth drop the subscript 0.  The X-

point geometry parameter εx is small for two reasons:  (i) due the strong elliptical fanning 

of the X-point region, k⊥ is enhanced over its midplane value,5,6 and (ii) Ld > L|| 

(midplane length) since the separatrix geometry enhances the field line length in the 

vicinity of the X-point. 

The dimensionless parameters X, Y, and εx completely characterize the solution 

space of instabilities in the model.  Balancing terms pair-wise in each equation 

determines the behavior (e.g. dimensionless linear growth rate a/~ˆ ωγω ) in a given 

regime, while balancing terms in triplets gives the regime boundaries.  We illustrate the 

procedure in detail for a few of the regimes, and summarize the results in Fig. 2 and 

Table 1.  

The scalings for the ideal strong ballooning mode (IB) are obtained from Eq. (1) 

(in the midplane region) by balancing curvature drive with inertia (i.e. polarization 

current) to obtain ω ~ γmhd.  The first (i.e. line bending) term in Eq. (1) is negligible 

when (γmhd/ωa)2 = Y  >> 1.  This mode has the character of a standing Alfvén wave in 

the midplane region.  The resistive strong ballooning mode (RB) similarly balances 

midplane inertia with curvature drive to obtain ω ~ γmhd, but the first term in Eq. (1) is 

small in the RB regime because of large resistivity ωa2/ωη << γmhd.  Current loops close 
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locally in the midplane region for RB modes.  These regimes illustrate how the 

conventional ballooning modes manifest themselves in our model. 

For the RX modes, midplane curvature drive creates parallel currents to the X-

point region, thus the γmhd and J||bc terms balance.  We show a posteriori that the 

midplane inertial term is negligible.   In the X-point region, inertial and line bending 

terms balance [see Eq. (4)].  Specifically, for the electrostatic RX-ES modes, (ωη >> ω) 

current loops close by X-point polarization currents which balance resistive line bending 

in Eq. (4) and enable matching to an evanescent resistive ballooning mode.  This limit 

was previously considered in the blob context16 (see also the next sub-section).  The 

linear growth rate, from Eq. (7), gives ω ~ γmhd4/3 ωη1/3/ωa2/3.  Thus, the resistive limit 

ωη >> ω applies when γmhd2 << ωηωa (i.e. Y << X).  Furthermore, midplane inertia is 

negligible in Eq. (2) when ω << γmhd, which requires γmhd ωη < ωa2 (i.e. YX2 << 1), the 

condition defining the transition from the RX-ES to the RB regime.  Finally, 

disconnection requires, from Eq. (9), ωωη >> εx2 ωa2 or γmhd ωη >> εx3/2 ωa2 (i.e. YX2  

>>  εx3).  These three boundaries enclose the region of parameter space for the RX-ES 

mode (see Fig. 2). 

The properties and regime boundaries of the electromagnetic RX-EM mode are 

obtained similarly, using Eq. (6) to estimate ω ~ γmhd2/ ωa. In this case  we have ωη << ω 

and the midplane region sees an outgoing Alfvén wave condition, viz. the X-point is an 

absorbing boundary condition.  The condition ωη << ω gives Y >> X; neglect of 

midplane inertia gives Y << 1, separating the RX-EM modes from the ideal (IB) regime; 

while disconnection requires γmhd2 ωη >> εx2 ωa3 (i.e. YX  >>  εx2) provided that the 

WKB local growth rate estimate remains valid at these low values of k.  These 

inequalities define the RX-EM regime in Fig. 2. 

When the disconnection condition, Eq. (9) is violated, the mode remains finite 

throughout the X-point region.  On closed field lines, such modes experience good 
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curvature on the inside of the torus, and become amenable to the standard two-scale 

resistive ballooning model mentioned in the introduction.  On the open field lines in the 

SOL, the connected modes become sheath-interchange modes17 with ω ~ γmhd2/ωs where 

the characteristic sheath frequency is ωs = cs/(L||k⊥2ρs2). 

Figure 2 illustrates the topology of the regimes in the (X, Y) plane.  It may be 

verified that the characteristic growth rates of the ballooning (IB, RB) and RX modes are 

continuous across the regime boundaries.  Note that the disconnection condition, and 

therefore the existence of the RX regimes, requires εx < 1; otherwise, (e.g. for circular 

flux surface plasmas) on closed surfaces the strong (fast) resistive ballooning modes, and 

the ideal modes transition directly into the connected (slow two-scale) resistive and 

interchange modes.  The scalings and boundaries of the regimes of Fig. 2 are also 

summarized in Table 1. 

B. Blob transport regimes 

Although the focus of the present paper is the linear physics and regimes of edge 

modes, it is useful to digress briefly and consider analogous regimes for convective 

“blob” transport.   In blob theory,18,19 semi-coherent convection of plasma in the SOL is 

achieved by balancing the time derivative with the convective derivative in the vorticity 

and continuity equations, so that a quasi-steady solution can be found in the convecting 

blob frame.  Consequently, by estimating 

 ∇⋅
∂
∂ v~
t

 (11) 

linear growth rates can be mapped to the blob velocity (and hence to the charge-induced 

blob “polarization” potential φ).  Thus, the regime diagram of Fig. 2 also gives the 

regimes and scaling of vx for convective blob transport.  The correspondences in going 

from linear modes to nonlinear blobs are summarized in Table 2, where ab is the blob 

radius. 
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This correspondence is not inconsistent with the view that nonlinear saturation of 

turbulence by wave-breaking creates blobs which then propagate outwards.  In this case 

the character of the blobs directly matches the underlying linear instability.  However, it 

is also possible for different mechanisms and or regimes to dominate linear instability 

and blob creation on the one hand, and far SOL blob propagation on the other. 

Some of the regimes indicated in Fig. 2 have been treated in the blob context, and 

in these cases, applying the correspondence rules of Table 2 recovers previously 

published results.20,21  In the blob context, regime C is the sheath connected blob treated 

in the early blob papers.18,19  The RX-EM regime corresponds to the Alfvén wave 

emitting blob14,15 which may be related to edge localized modes (ELMs). The RX-ES 

regime is the three-dimensional (3-D) blob with current loop closure in the X-point 

region.16  These blobs appear in 3-D turbulence simulations at high density16 and may be 

play a role in the density limit.20  The RB regime corresponds to a two-dimensional (2-

D) blob with local balance (at each point along the field line, in the plane perpendicular 

to B) between the ion polarization current and the curvature drive such as occurs for 

blobs smaller than a characteristic size.22 

The analysis can therefore be used to obtain specific scalings of the radial 

convective velocity vx ~ φ/ab for each regime.  Since experiments cannot generally 

measure linear growth rates directly, the blob velocity scalings may provide a useful 

point of contact of the present theory with data.  With the caveat that the present “hand-

waving” analysis does not accurately predict order unity constants, the scalings are given 

in Table 3.  In the last column of the table, we employ the dimensional units: vx(cm/s), 

ne(cm-3), Te(eV), ab(cm), R(cm), B(G), and q = L||/R.  For the numerical scalings, we 

have taken Z = 1, µ = 2, and ln Λ = 15 respectively for the ion charge (e), ion/proton 

mass ratio and Coulomb logarithm.  A sample scaling for sheath-connected thermalized 

density blobs in the collisionless limit (as treated in Refs. 18 and 19) is given; however, 
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other connected limits are also possible, including for example the effects of spin,23 and 

parallel resistivity.  A description of these regime boundaries would require additional 

dimensionless parameters, and is beyond the scope of the present analysis. 

IV. Application to the quasi-coherent mode and the EDA regime 

A. Postulate for the quasi-coherent mode 

The present categorization of instability regimes, together with previous 

experimental results and simulations using the BOUT turbulence code24 suggests that the 

QC mode observed on C-Mod is an RX-EM mode.   This identification has specific 

implications for the plasma conditions required to support the mode when FLR 

(diamagnetic stabilization) considerations are invoked. 

In each mode regime, there exists a k* such that modes with k > k* are stabilized 

by FLR, viz. 

 γ=≡ω ∗∗∗ ii vk  (12) 

where v*i is the ion diamagnetic drift velocity, and γ the linear growth rate.  As FLR 

effects increase, modes stabilize first at large X ∝ k⊥2, then at increasingly smaller X.  

Our postulate for existence of the QC mode and the EDA regime is that k* lies in the RX-

ES regime.  The reasons for, and implications of, this postulate will be the subject of the 

remainder of this section. 

The postulated condition allows instability of all of the RX-EM modes while 

ensuring an FLR-stabilized RB branch. The stabilization of the RB branch was shown to 

be critical to suppressing strong turbulence associated with low-confinement-mode (L-

mode) transport.12  This RB suppression gives a second condition on the parameters and 

a window for the EDA regime, which we will return to in the next section.  We first 

consider the condition that k* = ω/v*i be larger than the k⊥ at the RX-ES/EM boundary 
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(i.e. the k⊥ defined by Y = X), kRX-ES/EM = γmhd/[δe(νeωa)1/2].  This condition may be 

expressed as  

 2
iae

2
e

2
mhd v∗ω>νδγ  (13) 

or equivalently 

 )m/m(RL eiaen βω>ν  (14) 

where Ln is the density gradient scale length, νe is the electron collision frequency, β = 

cs2/va2 is the plasma beta, and mj are the species masses.  Inequality (14) represents a 

fundamental transition point in the dimensionless parameter space that describes edge 

instabilities in the presence of an X-point.  Similar to the arguments put forward by 

Connor and Taylor,25 this condition can be expected to indicate a change in behavior of 

the system without a detailed knowledge of the solutions of the model, or even the 

physical processes.  The condition arises solely from scaling analysis and the assertion 

that resistive modes of the type described by Eqs. (1) – (4) and X-point physics are 

important ingredients.  

We speculate that the observed QC mode is probably the lowest-k RX-EM mode 

that remains disconnected.  The low value of k enhances transport (D ~ γ/k2) across the 

separatrix that is critical to the EDA regime.  In addition to linear instability drive, the 

observed mode may be fed by inverse cascade from an unstable higher-k RX-ES 

spectrum.   The emergence of a single mode, for parameters not sufficient to drive fully 

developed pressure-gradient driven (RB) turbulence, has been noted in previous 

nonlinear model computations.26 

B. Qualitative comparison with experiment 

Rewritten in terms of plasma parameters, Eq. (14) becomes 

 1
T)R/a(

nqf)/L(
105.5

2

2/1
e

22
mhdin7 >

ρ
× θ−  (15) 
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where dimensional units are again employed: ne(cm−3), Te = Ti = T(eV).   Here ρθi = 

ρiB/Bθ is the poloidal Larmor radius, a/R is the tokamak inverse aspect ratio, and we 

have set ωa = va/qR and γmhd2  = fmhd2 cs2 (RLn).  The extra dimensionless order unity 

form factor fmhd [not present in Eq. (14)] will be used to fit the hand-waving MHD 

stability limit Y = 1 to more realistic experimental values. 

The parameter scalings of (15) have several points of qualitative agreement with 

experiments.1-3  First, for typical EDA regime parameters near the separatrix where the 

mode should locate, the left-hand-side is unity in order-of-magnitude.  Illustrative edge 

parameters are fmhd = 2, Ln = 0.4 cm ≈ ρθi, ne = 1014 cm−3, q = 3.5, T = 40 eV, a/R = 

0.26 and B = 4.2 × 104 G. The proposed condition (15) for the existence of a strong QC 

mode, and hence for the EDA regime, favors high q, larger Ln (than “ELMy H-mode”), 

and weakly favors larger ne, all consistent with the experimental results reported in 

Ref. 1.  The strong inverse scaling with T in Eq. (15) is consistent with the observation 

that the EDA regime favors higher neutral gas (i.e. lower edge T). 

In addition to the preceding, and in agreement with certain aspects of previously 

noted BOUT simulations,24 the expected properties of the QC mode are consistent with 

experimental observations in several respects.  The RX-EM mode has an electromagnetic 

component in the theory, as observed for the QC mode.  The QC mode is observed in 

experiments at the top and bottom as well as on outboard side of the torus. This is 

consistent with a curvature driven mode like the RX mode (which penetrates up to the X-

points) but not with strong RB modes (which are localized to the outboard midplane). 

The experiments also show high-frequency broadband turbulence in addition to 

the QC mode, which is consistent with the higher-k RX-ES spectra in the regime 

diagram.  Furthermore, the high-frequency broadband turbulence is reported to get larger 

in L-mode (consistent with instability of the entire RX-ES and stronger RB branch). 
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While these correspondences between the theory and experiment are encouraging, 

there is also a possible weakness in the proposed hypothesis.  The RX-EM/ES boundary 

(X=Y) which gives the EDA regime is somewhat fragile in the theory, in that it is 

sensitive to the form of the X-point boundary condition that is employed (WKB vs. Born 

limit).  The Born limit is explored in Appendix A where it is shown that the details of the 

growth rate scalings and RX-EM/ES regime transition boundary is sensitive to the form 

of the parallel shear profile k⊥(s) in the Born limit.  In some cases the RX-EM regime 

even disappears entirely.  It remains an open question as to whether this fragility 

indicates a weakness in the theoretical hypothesis proposed here, or whether it perhaps 

merely indicates a sensitivity of EDA-like modes to details of the magnetic flux 

geometry. 

A final point requiring further investigation is that the present theory [specifically 

Eq. (6) near maximum growth] predicts a mode frequency Re(ω) ≈ ω*i/2 in the E×B drift 

frame.  Experimentally, the QC mode is observed to be in the ω*e direction in the lab 

frame.  A reconciliation will require a self-consistent estimate of the resulting radial 

electric field (Er) well and comparison of the prediction with the observed toroidal 

rotation. 

C. Radial mode structure of the QC mode 

In addition to the generic scaling arguments made so far, the described method of 

treating RX modes can also be employed to obtain a model equation for their radial mode 

structure.  Making the identification k⊥ → −iex ∂/∂x + kyey, and noting that a careful 

treatment of γmhd2 shows it to be proportional to ky2/k⊥2 (see e.g. Ref. 7), the RX mode 

dispersion relation of Eq. (5) takes the form 

 0
F

1k
x

2
2
y2

2
=φ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ γ
+−

∂

φ∂ κ  (16) 
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e

ei
ai i
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))((

i)(F  (18) 

Here, the final form of F is the low-k outgoing Alfvén wave limit. 

Equation (16) has been solved numerically, using illustrative experimental 

parameters, and furthermore taking ky from the data. (We will return to this point later.)  

In obtaining the solution, proper account must be taken of the appropriate branch of the 

square root to insure a legitimate outgoing-evanescent wave along the field line by 

monitoring Im (k||).  The resulting radial mode structure is shown together with the 

assumed radial density profile in Fig. 3 a).  Parameters for this case (at the top of the 

pedestal, denoted by subscript ped) are nped = 4 × 1014 cm−3, Tped = 200 eV, B = 4.2 × 

104 G, R = 85 cm, q = 3.5, L|| = q R, µ = 2 (i.e. mi = 2 amu), Z = 1, and ky = 4 cm−1.  For 

the illustrated profile, Ln ~ 0.4 cm at its minimum near the inflection point. The mode is 

seen to span the separatrix (where the separatrix location is assumed based on the shape 

of the density profile), and is localized near the maximum of ∇p/p where p = nT.  

Furthermore, the mode is at the collisional RX-EM/ES regime boundary on the separatrix 

as shown Fig. 3 b) from the radial variation of ωη/ω.  Recall that ω = ωη defines this 

regime boundary. 

The present model is not adequate to predict the observed ky.  It is straightforward 

to show analytically [e.g. taking a “sharp boundary” limit of Eq. (16) to obtain radial 

matching conditions connecting the solutions on either side of the jump] that the RX-EM 

growth rate γ ∝ ky for ky → 0 in our model.  However, in reality, the mode will violate 

the disconnection condition, Eq. (8) or (9) first, making Eq. (16) inappropriate.  Once 

connected, the RX-EM mode can “see” good curvature inside the separatrix on the HFS.  

This should provide a strong stabilizing influence.  So the observed ky may come from 
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the disconnection condition, which depends on details of the X-point magnetic geometry 

not considered here. The nonlinear inverse cascade, which pumps energy into the low-k 

modes, may also play a role in determining the observed ky. 

V. Edge phase space diagram and the EDA regime 

In Sec. IV A the natural wavenumber scale k* = ω/v*i was used to eliminate k⊥ 

from the regime boundary describing the RX-EM/ES transition. Here, we apply the same 

philosophy to all the regime boundaries of Fig. 2, in order to systematically describe the 

edge parameter space.   

With FLR physics, Eq. (1), or Eqs. (2) – (4) depend on the characteristic 

frequencies ωη, γmhd, ωa, and ω*i, from which we can arbitrarily choose three 

dimensionless combinations: ωηγmhd /ωa2, γmhd2/ωa2 and ω*i/γmhd.  These, however, still 

depend on k.  Motivated by Ref. 12, we can choose a characteristic k relevant to the RB 

boundary defined by  ωηγmhd  ~ ωa2 (viz. XY1/2 ~ 1) and then use this k in ω*i/γmhd to 

measure the strength of FLR stabilization.  We thus obtain the two phase space 

parameters 

 
2
a

2
mhd

mhd
ω

γ
=α  (19) 

 
2/3

mhd
2/1

ee

ai
d

v

γνδ

ω
=α ∗  (20) 

where recall that αmhd ≡ Y measures the strength of MHD curvature drive relative to line 

bending.  These are essentially the parameters defined in Ref. 12, up to order unity 

constants, and distinctions between the various possible scale lengths of density, 

pressure, etc. 

The procedure is to set the growth rate at each of the regime boundaries of Fig. 2 

to ω*i and thereby obtain the critical k* at which FLR stabilization becomes dominant.  
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Then this k* is employed in X ≡ ωη/ωa to express the function form of the boundary 

Y(X) in terms of the parameters αmhd and αd.   

To alleviate the tedium of these calculations it is useful to note (after some 

algebra) that 

 1C 2
d

2/32)21(
mhd

21 <αα +β−α−µα−  (21) 

is the condition that a mode on the boundary X = CYµ is unstable (i.e. k < k* so it is not 

FLR stabilized) where the normalized growth rate of the mode in question on the 

boundary is βα=ω YXˆ . (When the growth rate is continuous across the boundary, the 

scaling on either side may be used.)   

Results are summarized in Table 4 and, schematically, in Fig. 4.  The labels in 

Fig. 4 indicate the types of modes that are unstable in each of the parameter space 

regimes.   The label RX implies instability of both the RX-EM and RX-ES branches.  At 

the far left of the diagram (αd << 1) there is no FLR stabilization and the RB branch is 

robustly unstable (as well as all the smaller k modes from Fig. 2 that are present at the 

given value of αmhd ≡ Y).  Nonlinear simulations12 suggest the identification of this 

regime with L-mode.  In the opposite limit, αd > 1, FLR effects are strong, and 

completely stabilize all curvature driven modes, provided αmhd < 1. In the upper-right 

corner of the diagram, αd, αmhd > 1, the plasma is unstable to ideal modes (down to 

small k, which are not effectively FLR stabilized).  In this discussion, we regard αmhd < 

1 as representing an ideal stability condition, recognizing that several considerations 

outside the scope of the present treatment can be important in determining this boundary.  

Such considerations would include the bootstrap current27 and second stability effects, as 

well as non-local diamagnetic physics.28  Qualitatively, the picture up to this point is 

similar to that of Ref. 12. 
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X-point physics adds a new regime to the (αmhd, αd) parameter space near the L-

H boundary at intermediate αd ~1 in the MHD stable regime (αmhd < 1), 

 
4/1

mhd
d

11
α

<α<  (22) 

in which the entire RX-EM spectrum and part of the RX-ES spectrum is unstable.   This 

is the parameter range for the QC mode postulated in Sec. IV A, viz. Eq. (22) is 

equivalent to the condition that k* lies in the RX-ES regime.  Consequently, the regime 

identified by Eq. (22) and shown with thick boundaries in the sketch of Fig. 4 is 

postulated to be the EDA regime.  Nonlinear simulations, beyond the scope of the present 

paper, would be required to map out the boundary of the EDA regime quantitatively.  

Finally, we note, that as the ideal stability limit is approached (αmhd → 1), the window 

for the EDA regime is predicted to shrink.  This may relate to the experimental 

observation that EDA regime operation favors stably shaped plasmas,1 at moderate δ and 

high q95. 

VI. Conclusions  

We have developed an analytic theory of resistive curvature-driven modes in the 

edge region of a diverted tokamak and shown the inter-relationships, parameter regimes 

and growth rate scalings of the various types of modes that arise.  These range from the 

conventional ideal ballooning and resistive ballooning modes which are localized near 

the midplane region to the resistive X-point and interchange modes which remain finite 

through (at least part of) the X-point region. The principal new results of the mode 

analysis of Secs. II and III are the analytic dispersion relation for resistive X-point modes 

in the WKB limit, Eq. (5), and the regime diagram of Fig. 2, showing the domains and 

scalings of the various modes with collisionality, wavenumber and strength of the 

curvature drive. 
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In addition to describing growth rates of linear instabilities, we also showed that a 

similar type of reasoning could be applied to deduce scalings for the radial convective 

velocity of blobs.  The blob regimes and scalings are obtained from Fig. 2 and Table 3. 

The preceding theory was also applied in Secs. IV and V to describe the quasi-

coherent mode and EDA regime observed on C-Mod.  In the present nomenclature, we 

postulate that the quasi-coherent mode is an electromagnetic resistive X-point mode (RX-

EM).  Analytical scalings for the existence of this mode were found to compare well with 

experimental trends for obtaining the EDA regime with edge safety factor, density and 

(inferred) temperature.  The principal theoretical scalings are given in Eqs. (14) or (15).  

Similar to previous BOUT simulations of the QC mode, the qualitative features were 

found to agree with experimental observations regarding the electromagnetic character, 

and poloidal extent of the mode.  Furthermore, a model radial eigenvalue problem for the 

QC mode was formulated and solved [Eq. (16)]. 

By introducing a wavenumber scale corresponding to the finite Larmor radius 

(diamagnetic) stabilization condition, and eliminating wavenumber from the mode 

instability regimes, an edge phase space diagram appropriate to divertor geometry was 

constructed.  This is the final principle result of our paper, and is given in Fig. 4.  It was 

found that X-point physics adds a new region to the (αmhd, αd) edge parameter space that 

is postulated to be the enhanced D-alpha (EDA) regime.  The predicted location of this 

regime is given by Eq. (22), which however, is only qualitatively accurate (up to order 

unity constants, and treating the ideal MHD stability boundary conceptually).  Nonlinear 

simulations with flux surface shaping and divertor geometry will be required to elucidate 

the detailed transition boundaries in this edge parameter space. 
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Appendix A: Resistive X-point modes in the Born limit 

X-point equation and method of solution 

In the X-point region we must solve Eq. (4) which takes the dimensionless form  

 0dh
dz
d

hib1
h

dz
d 22

22

2
=Φ+

Φ

+
 (A1) 

where we drop diamagnetic effects, ∇|| = d/ds, z = s/Lg = is a dimensionless parallel 

coordinate, with Lg an equilibrium parallel scale length,   b2 = ωη0/ω, d = ω/ωag, and 

ωag = va/Lg. In this appendix, for clarity we denote quantities at the entrance to the 

region with subscript 0.   

The parallel spatial variation enters Eq. (A1) through  h(z) = k⊥/ k⊥0 which grows 

dramatically in the X-point region due to magnetic shear (and also poloidal field 

variation).  We model this effect by considering two explicit profiles of h(z) in the 

following subsections.   

Analytic solutions to Eq. (A1) are possible when d >> 1 (WKB limit, treated in 

the main text) or d << 1 (Born limit) considered in this appendix.  The Born method may 
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be briefly summarized as follows. For z, b ~ 1, we integrate Eq. (A1) neglecting h2d2Φ to 

obtain an explicit solution.  In the asymptotic regime z >> 1 we use h2d2  >> 1 to solve 

for the evanescent branch at ∞, again in terms of explicit functions.  The z ~ 1 and z >> 1 

solutions are then matched in an overlap region.  Finally, it is then possible to calculate 

dlnφ/dz at the entrance to the X-point region (z = 0) to get the desired boundary condition 

for use in Eq. (3). 

Parabolic profile of k⊥2(s) 

The first profile we consider is the parabolic profile of  k⊥2(s), 

 2/12 )z1()z(h +=  (A2) 

The h2d2 → 0 limit of Eq. (A1) may be integrated to give  

 DCzibzarctanC 2 ++=Φ  (A3) 

where C and D are constants of integration.  The sub-limit of this solution for z > 1 is 

therefore ziCb)D2/C( 2++π=Φ .  Once C and D are determined, the desired 

logarithmic derivative at z = 0 is  

 )ib1(
D
C

dz
d1 2

0z
+=

Φ
Φ =

 (A4) 

To obtain C and D we solve the z >> 1 limit of Eq. (A1), which takes the form 

 0i 2
2

2
=φξ+

ξ∂

φ∂  (A5) 

where ξ = z(bd)1/2 ~ 1.  The solutions may be expressed in terms of either parabolic 

cylinder functions or Whittaker functions. The solution that is evanescent at infinity 

(check a posteriori) and regular at ξ = 0 is 

 )2/x(Wx)x,0(U 2
4/1,0

2/1
−

−==Φ  (A6) 
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where x = 21/2 exp(−iπ/8)ξ and we adopt the notation of Ref. 29. Taking the ξ << 1 sub-

limit of Eq. (A6) and matching to Eq. (A3) in their region of overlapping validity yields 

the ratio 

 
αβ

α

π−
=

C)bd)(2/(ibC

C)bd(
D
C

2/12

2/1
 (A7) 

where Cα = (π/2)1/2 eiπ7/8/[2 Γ(5/4)], Cβ = (π/2)1/2/Γ(3/4) and Γ is the gamma-function.  

Finally, the desired boundary condition for the midplane region (EM and ES) is obtained 

as 
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Combining with Eqs. (2) and (3) of the main text we obtain the dispersion relation 

 0
)4/5(

)4/3(
ie 4/3

0

4/52/1
aga8/7i2
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ωΓ

ωωωΓ
−γ

η

π  (A9) 

Note that Eq. (A9) has employed ω << γmhd, valid for the RX regime The resulting RX 

mode growth rate is given by 

 5/2
ag

5/4
a

5/3
0

5/8
mhd

0A
ωω

ωγ
=ω η  (A10) 

where the constant A0 arises from the branch cuts, and implies unstable roots for the 

three choices A0 = {±0.75+0.24i, 0.79i}.  Equation (A10) is to be compared with the 

WKB result (taking ω* = 0) of Eqs. (6) or (7).  We note that the parabolic profile result 

shows no structural or growth rate scaling change between the ES and EM limits (b >> 1 

and b << 1 respectively) because the factor (1 + ib2) in Eqs. (A8) and (3) cancels out. 

Exponential profile of k⊥(s) 

A similar analysis may be carried out for the exponential profile 
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 )zexp()z(h =  (A11) 

Following the same procedure as for the parabolic case, the h2d2 → 0 limit yields Φ = 

C[ib2z – exp(–2z)/2] + D.  The large z, h limit gives Bessel’s equation, and the evanes-

cent solution at infinity is Φ = K0(ξ) where here ξ = bd exp(−iπ/4 + z).  After matching 

these two solutions in their region of overlapping validity, we obtain the desired result 
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where 0Ec ln2 ξ−γ−=α ln  and γE is Euler’s constant. 

The resulting RX mode dispersion relation is 

 0
bi21
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and the RX mode growth rate for the exponential profile is 
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The last approximation is normally valid, since Y << 1 is required to avoid the stronger 

ideal unstable (IB) branch.  This typically implies γmhd2  << ωaωag (unless Lg >> L||).  In 

the same limit, we see that ω/ωη0 << 1 so the mode is necessarily electrostatic.  In the 

opposite limit, γmhd2  >> ωaωag the mode is damped.  Thus there is no RX-EM mode for 

an exponential profile, only RX-ES modes. 

Transition between the WKB and Born limits 

In the ES limit (ωη >> ω, or b >> 1) we can solve Eq. (A1) for the exponential 

profile exactly, yielding the same Bessel solution as in the preceding discussion, Φ = 

K0(ξ).  This otherwise general result elucidates the transition between the WKB and 

Born limits.   
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The desired boundary condition for the midplane region is 
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where bde 4/i
0

π−=ξ .  The RX mode dispersion relation is 
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The WKB sub-limit is ξ0 ~ k||Lg >> 1 while the Born sub-limit is ξ0 << 1. 

Expanding the Bessel ratio in large and small argument limits, we find 
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In the WKB limit (λ|| < Lg) the mode “sees” into the X-point region a distance equal to 

its evanescence length λ||, whereas in the Born limit (Lg < λ||) the mode sees into the X-

point region a distance equal to the equilibrium scale length Lg.  Thus in the WKB limit, 

the dispersion relation only “knows” about conditions at the entrance to the X-point 

region, while in the Born limit it “knows” about conditions further in. 

Appendix summary 

The main conclusion from this appendix is that RX modes exist when the mag-

netic geometry variation along B is both gentle (WKB limit of the main text) and rapid 

(Born limit).  The growth rate scalings are slightly different in each case.  Depending on 

the details of the profile in the Born limit, the RX-EM subtype may not exist. This 

situation occurred for the exponential profile example, and may be a general feature of 

cases with very rapidly increasing profiles of shear in the parallel direction. 
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Tables 

 

regime 
growth rate 

a/ˆ ωω=ω  boundaries 

IB Y1/2 1, X2 < Y 

RB Y1/2 1/X2 < Y < X2 

RX-ES X1/3Y2/3 
3
xε  < X2Y < 1 

Y < X 

RX-EM Y 
2
xε  < XY 

X < Y < 1 

C Y
s

a
ω
ω

 
X2Y < 3

xε  if Y < X 

XY < 2
xε  if X < Y 

Y < 1 

Table 1.  Regime summary (WKB limit) where X = ωη/ωa, Y = γmhd2/ωa2.  The growth 

rate for C is an example for the sheath-connected collisionless limit. 

 

linea

r 

blob 

k⊥ 1/ab 

Ln ab 

γ vx/ab = 

cφ/ab2B 

k|| 1/L|| 

Table 2.  Correspondences between linear and blob parameters.  The blob radius is ab. 
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regime description vx (analytic) vx (cm/s) 

IB ideal 3-D blob 
2/1

2/1
s

R

c ba
 2/1

2/1
e

2/1
5

R

T
109.6 ba

×

RB local 2-D blob 
2/1

2/1
s

R

c ba
 2/1

2/1
e

2/1
5

R

T
109.6 ba

×

RX-ES 3-D resistive-disconnected 
blob 3/1

e
3/1

3/1
e

3/1
ss

3/2 cq

Ω

νρ

ba 3/23/1

6/1
e

3/1
e

3/2

B

Tnq
.490

ba

RX-EM Alfvén-wave-emitting blob 
a

2
s

v
qc

 
B

Tqn
1.3 e

2/1
e  

C sheath-connected 2-D blob 
(collisionless limit) 2

2
ssqc

ba

ρ
 22

2/3
e10

B

qT
104.1

ba
×  

 

Table 3.  Radial blob velocity scalings for WKB outgoing-evanescent wave conditions in 

the parallel direction.  In the final column, the units are vx(cm/s), ne(cm−3), Te(eV), 

ab(cm), R(cm), B(G), and q = L||/R.  Numerical coefficients are approximate (order unity 

corrections may apply). 
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boundary C µ α β 
instability 
condition 

IB/RX-EM 1 ∞ 0 1/2 1mhd >α  

RB/RX-ES 1 −1/2 0 1/2 1d <α  

RX-EM/RX-ES 1 1 0 1 4
dmhd /1 α<α  

C/RX-EM εx2 −1 0 1 3/4
d

3/4
xmhd αε>α  

C/RX-ES εx3/

2 
−1/2 1/3 2/3 4/1

xd /1 ε<α  

IB/RB 1 1/2 0 1/2 2
dmhd /1 α<α  

 

Table 4.  Transformation of regime boundaries in (X, Y) space to (αmhd, αd) space using 

the diamagnetic stabilization condition. [see Eq. (21) for µ ≠ ∞]  Results for the C/RX-ES 

and C/RX-EM transitions are approached from the RX side of the boundary.  Referring to 

Fig. 2, the inequality in the last column implies instability for modes on the indicated 

boundary, as well as all modes at the same Y with smaller k. 
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Table captions 

1. Regime summary (WKB limit).  The growth rate for C is an example for the 

sheath-connected collisionless limit. 

2. Correspondences between linear stability parameters and blob parameters.  The 

blob radius is ab. 

3. Radial blob velocity scalings for WKB outgoing-evanescent wave conditions in 

the parallel direction.  In the final column, the units are vx(cm/s), ne(cm−3), 

Te(eV), ab(cm), R(cm), B(G), and q = L||/R.  Numerical coefficients are 

approximate (order unity corrections may apply).  

4. Transformation of regime boundaries in (X, Y) space to (αmhd, αd) space using 

the diamagnetic stabilization condition. [see Eq. (21) for µ ≠ ∞]  Results for the 

C/RX-ES and C/RX-EM transitions are approached from the RX side of the 

boundary.  Referring to Fig. 2, the inequality in the last column implies instability 

for modes on the indicated boundary, as well as all modes at the same Y with 

smaller k. 
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Figure captions 

1. Schematic of current loops arising from the curvature-driven charge separation 

(current source).  The topology of these current loops determines the edge regime. 

2. Instability and blob transport regime diagram (WKB limit). 

3. Radial mode structure of the QC mode: a) normalized density profile (dashed) 

and eigenfunction (solid) vs. radius, b) collisionality vs. radius.    

4. Edge phase space diagram with X-points (WKB limit).  Labels indicate the types 

of modes that are unstable in each of the parameter space regimes.   RX implies 

instability of both the RX-EM and RX-ES branches.  The regime bounded by the 

thick line is postulated to be the EDA regime. 
 
 
 
 



 
 
 
 
 
 

 
 
 
 
 
 

Fig. 1  Schematic of current loops arising from the curvature-driven charge separation 
(current source).  The topology of these current loops determines the edge regime. 
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Fig. 2  Instability and blob transport regime diagram (WKB limit). 
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Fig. 3  Radial mode structure of the QC mode: a) normalized density profile (dashed) and 
eigenfunction (solid) vs. radius, b) collisionality vs. radius.  
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Fig. 4  Edge phase space diagram with X-points (WKB limit).  Labels indicate the types 
of modes that are unstable in each of the parameter space regimes.   RX implies 
instability of both the RX-EM and RX-ES branches.  The regime bounded by the thick 
line is postulated to be the EDA regime. 
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