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Abstract

A combined finite element and spectral scheme is presented for analyzing
self-consistent radio-frequency (RF) sheath-plasma interactions in the ion
cyclotron range of frequencies. The present method provides a stable solu-
tion even for the case where grids are not fine enough to resolve the expo-
nential decay length of the wave mode along the sheath. The key feature
in the method is that a spectral discretization is applied to the boundary
condition equation that models RF sheath-plasma interactions and this is
combined with a finite element discretization of the volume equation that
governs cold plasma behavior. Several two-dimensional problems including
linear and nonlinear cases are given to illustrate the capabilities of the present
approach.
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1. Introduction

In the quest for the production of fusion energy from tokamaks [1, 2]
or other magnetically confined plasmas, some form of plasma heating and
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control is generally required. The application of radio-frequency (RF) waves
in the ion cyclotron range of frequencies (ICRF) is one such heating method
[3], which can also be used to influence other plasma properties such as
currents and flows. While much success has been achieved with ICRF, in
some operational regimes strong deleterious interactions with the walls and
limiters of the device are observed in the scrape-off layer (SOL) [4–8]. A desire
to better model these plasma-ICRF-surface interactions is the motivation for
the present work.

While identifying and modeling all the possible active mechanisms at
work is still an active subject of research, ICRF driven sheaths are thought
to be an important mechanism which we take as the basis for the numerical
model presented here, i.e., the rfSOL (RF sheath-plasma interactions in the
SOL) code. The physics of ICRF sheaths has been reviewed in [9, 10] and
initial applications of the numerical model embedded in the rfSOL code [11]
were discussed in Ref. [12]. Briefly, the model describes standard RF plasma
wave propagation in the interior volume region using a cold plasma dielectric
function. These waves then interact with a wall sheath which is described
by a sheath boundary condition (sheath BC) [13, 14] on the surface of the
interior region (or some subset of the surface).

The model described by Maxwell’s equations combined with the sheath
BC at the boundary turns out to give rise to a number of new phenomena
which are both physically interesting and numerically challenging. In par-
ticular, the wave interaction with the sheath is sensitive to details of the
device geometry and magnetic field configurations, which motivates the use
of finite element methods. It has been observed in the present model that
short-scale length modes can appear on the sheath surface depending on
the contact angle between the magnetic field line and the wall, plasma den-
sity, and wave-field patterns. After thorough numerical investigation, it has
been found that some of the observed fine-scale variations have no physical
meaning, but are caused by numerical instability under certain conditions.
Specifically, in order to avoid unwanted numerical oscillation, sufficient spa-
tial resolution is required in the perpendicular direction to the sheath surface
when the contact angle between the magnetic field line and the wall becomes
very small and thereby the decay length of the wave mode, in particular, the
sheath-plasma wave (SPW), becomes considerably smaller than that for a
larger contact angle (as will be shown in Figure 5 later). If the numerically
induced modes occur in a size comparable to or smaller than calculation grid
lengths on the sheath, unstable grid-scale oscillation can be generated and
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propagate along the sheath; in some cases this numerical error becomes so
significant that it can spoil a numerical solution over a wide range. On the
other hand, if the numerical instability occurs in unimportant regions, for
example, where the contribution of the RF sheath is sufficiently small, a
numerical scheme that bypasses the requirement of high resolution near the
sheath is desirable.

The objective in this paper is to present a combined finite element and
spectral approach which can stably solve any RF sheath-plasma interaction
problems in the ICRF. The spectral method is well known to yield accurate
solutions when solution profiles are sufficiently smooth [15–17], and there
have been several papers which demonstrate combined techniques of finite
element and spectral methods for different purposes [18–22]. In our approach,
a spectral method is applied to the discretization of the sheath BC to assure
stability of solutions. The basic concept is that unstable grid-scale oscilla-
tions generated on the sheath surface as a consequence of imposing the sheath
BC under insufficient grid resolution can be avoided by introducing a finite
cutoff number of harmonics in the spectral discretization. This approach pre-
vents the grid-scale oscillations from propagating from regions where errors
are particularly generated. Since the finite element method is still applied to
the plasma volume, the resultant global matrix is mostly sparse, which makes
it possible to compute a global matrix equation with modest computational
effort by employing an appropriate sparse matrix solver.

The present paper is organized as follows. In Section 2, we briefly review
the model for the numerical analysis of RF sheath-plasma interactions. The
combined finite element and spectral approach is then presented in detail for
both linear and nonlinear cases in Section 3. The validity of the developed
scheme is tested by comparing the numerical results with those obtained
by the previous finite element approach under the same conditions, and a
challenging example which triggers unstable modes on the sheath surface is
solved by the new numerical method in Section 4. Finally, conclusions of the
present work are offered in Section 5.

2. Problem formulation for RF sheath-plasma interactions

In this section, we briefly summarize the equations that govern the be-
havior of plasma waves in the SOL and the interaction between the waves
and the sheaths on metal surfaces in the ICRF.
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The governing equation for plasma waves in the SOL is a combined form
of Maxwell’s equations described as

∇×∇×E − ω2

c2
ε ·E − iωµ0Jext = 0, (1)

where the electric field E and the external current Jext vary on the RF time
scale (i.e., E, Jext ∝ e−iωt). Here, ω is the applied ICRF wave frequency, c is
the speed of light, having a relation with the dielectric constant ε0 and the
permeability µ0 in vacuum, which is expressed as c2 = (ε0µ0)

−1, and i is the
imaginary unit. The dielectric tensor ε is given by

ε = (I − bb) ε⊥ + bbε‖ + ib× Iε×, (2)

where I is the unit tensor, and b is the unit vector along the background
magnetic field B0 (b = B0/ |B0|); the subscript 0 denotes an equilibrium
quantity. Here, the coefficients ε⊥, ε‖, and ε× are expressed as follows:

ε⊥ = 1−
∑
j

ω2
pj

ω2 − Ω2
j

, ε‖ = 1−
∑
j

ω2
pj

ω2
, ε× =

∑
j

ω2
pjΩj

ω
(
ω2 − Ω2

j

) , (3)

where ωpj and Ωj are the plasma frequency and gyro frequency defined as

ωpj = (nj0e
2/ε0mj)

1/2
and Ωj = qjB0/mj, respectively; the subscript j in-

dicates two-species particles, i.e., an ion (i) or an electron (e), nj0 is the
plasma number density, e and qj are the electric charge (|qj| = e), mj is the
ion or electron mass, and B0 = |B0|. Throughout this study, we assume that
quasi-neutrality in the plasma is retained, i.e., ne0 = ni0 = n0.

At the metal wall, the RF sheath effect is taken into account by means
of the sheath BC, which is written as follows:

Eτ = ∇τ

(
∆sh

εsh
Dn

)
. (4)

Here, ∆sh is the time-averaged sheath width, εsh is the dielectric constant
in the sheath (in this study we assume that εsh = ε0), Dn (= ε0s · ε · E)
is the component of the electric displacement normal to the sheath (and
s in the definition is the unit vector normal to the sheath pointing into
the plasma), and the subscript τ denotes the two components tangential
to the boundary. The right-hand side of Eq. (4) contains the physics of
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sheath capacitance. The sheath BC reduces to the conducting-wall boundary
condition (conducting-wall BC) for ∆sh → 0. In a manner consistent with
the Child-Langmuir law [23, 24], the sheath width is written as follows:

∆sh =

(
eCsh

εshTe
|Dn|

)3

λ4De + CthλDe, (5)

where Csh is an order-unity constant (which is fixed at 0.6 in this study),
Te is the electron temperature, λDe is the electron Debye length defined as

λDe = (ε0Te/ne0e
2)

1/2
. The coefficient Cth is given by

Cth =


0 for sinϑ ≤ (me/mi)

1/2{
ln

[(
mi

me

)1/2
sinϑ

]}3/4

for sinϑ > (me/mi)
1/2,

(6)

where ϑ is the angle between the magnetic field line (based on the back-
ground magnetic field, B0) and the sheath surface, defined such that sinϑ =
|B0n| / |B0| where B0n is the perpendicular component of the background
magnetic field to the wall. The first and second terms in Eq. (5) are the RF
and thermal sheath contributions to the self-consistent sheath width, respec-
tively. Sheath models similar to the capacitive sheath model employed here
have also been derived in the plasma processing literature [25, 26].

3. Discretization of the governing equations

In our previous work [11], the sheath BC was discretized using a one-
dimensional (1D) finite element method. In this study, we aim at discretizing
the sheath BC using a spectral method and construct a system of algebraic
equations in conjunction with the finite element discretization of the govern-
ing equation for the plasma volume. We first review the discretized equations
in the plasma volume in Section 3.1, and then from Section 3.2 focus on the
discretization of the sheath BC. Note that the dielectric tensor, the sheath
BC, and Maxwell’s equations are defined in three-dimensional (3D) space,
and the latter also in time. The assumption of Fourier modes in z and t
allows these dependencies to be taken into account analytically, hence the
discretized equations will turn out to be independent of z and t.
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3.1. Discretization of Maxwell’s equation

As in our previous approach, the combined form of Maxwell’s equations,
Eq. (1), is discretized in the x-y plane by a two-dimensional (2D) finite
element method. The weak form of Maxwell’s equation for the plasma volume
is given by∫

Ω

(
∇×W · ∇ ×E − ω2

c2
W · ε ·E − iωµ0W · Jext

)
dΩ = 0, (7)

where Ω represents the calculation domain, and W is the weight function.
Here, the weight function is chosen such that its tangential components are
zero (Wτ = 0) on the boundary, since the sheath BC or the absorbing
boundary condition (absorbing BC), which will be defined later, is imposed
as a boundary condition; therefore, the boundary integral term is omitted in
the derivation of Eq. (7) (see Ref. [11] for details).

Although Eq. (1) corresponds to the 3D representation of the physical
quantities including the weight function, we assume a Fourier mode in the
z components of E, Jext, and W in the Cartesian coordinate system. This
is what permits the governing equation to be spatially discretized in the x-
y plane in this analysis. The calculation domain is divided into nine-node
quadrilateral grid elements, and then the weight function and electric field
are defined based on the standard Galerkin approach as follows:

W = ŴiNi (x, y) e−ikzz = ÑiŴi, (8)

E = ÊjNj (x, y) ei(kzz−ωt) = ÑjÊje
−iωt, (9)

where Ni and Nj are the piecewise biquadratic interpolation functions, kz
is the wavenumber component in the z direction, Ŵi and Êj are the nodal
vectors, and the subscripts i and j denote the global node number. The
summation convention applies to the subscripts i and j. We note that readers
should not confuse the subscript i with the imaginary unit i. The former is
always used as a subscript and is italicized.

Substituting Eqs. (8) and (9) into Eq. (7) and then due to the require-
ment that the equation needs to be satisfied for arbitrary Ŵi, the algebraic
equations for the plasma volume are derived as follows:

F = R, (10)
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where

F =

∫
Ω

[
∇×

(
ÑjÊj

)
×∇Ñi −

ω2

c2
NiNjNkεk · Êj

]
dΩ , (11)

R = iωµ0

∫
Ω

NiJantdΩ . (12)

Here, the dielectric tensor is interpolated as ε = Nkεk using its nodal values
εk, and the external current is expressed as

Jext = Jante
i(kzz−ωt). (13)

Note that the exponential functions that include z and t are cancelled out
and not included in Eq. (10). On the boundary Γ where we impose the
condition Wτ = 0, the algebraic equations are given by

si · F = 0, (14)

where si is the unit normal vector at the node i to the boundary Γ . In
Eq. (14), we note that the summation convention is not applied to the sub-
script i.

3.2. Discretization of the sheath BC

For both linear and nonlinear cases, the sheath BC described in Eq. (4) is
discretized based on the weighted residual method as it is for a finite element
method. Forming the inner product of Eq. (4) with the weight function W S,
and then integrating it over the sheath region Γ S yields∫

ΓS

W S · [Eτ −∇τ (∆shκ)] dΓ S = 0, (15)

where κ = s · ε · E. Hereafter, the superscript S is occasionally attached
to the quantities which are positioned on Γ S for clarity. For simplicity, we
assume that the sheath is formed on a flat wall that lies in the y-z plane as
shown in Fig. 1. Thus, the normal direction to the sheath is s = ±ex where
ex is the unit vector in the x direction, and the tangential directions, τ ,
correspond to ey and ez which are the unit vectors in the y and z directions,
respectively. For the spectral discretization, the weight function and electric

7



field are defined as

W S =

NF∑
l=−NF

Ŵ S
l e−i(lksy+kzz), (16)

Eτ =

NF∑
m=−NF

ÊS
τmei(mksy+kzz−ωt), (17)

where NF is the cutoff number of harmonics, Ŵ S
l and ÊS

τm are constant
vector coefficients, and ks = 2π/Ly; Ly is the length of the flat wall to
which periodicity is applied in the y direction. Notice that the spectral
discretization is applied only to the electric field components tangential to
the sheath surface; the electric field component normal to the sheath surface
is discretized according to Eq. (9). Considering that Eq. (15) needs to be
satisfied for arbitrary Ŵ S

l , one gets∫
ΓS

e−i(lksy+kzz) [Eτ −∇τ (∆shκ)] dΓ S = 0. (18)

Note that this holds for different l. In the following sub-subsections, we first
show the spectral discretization procedure for the linear sheath BC and then
advance the procedure to solve the nonlinear sheath-plasma interactions. For
clarity, the numerical solution in this approach consists of (1) the nodal values
of the electric field in the plasma volume and the normal component of the
electric field at the boundary for finite element discretization (see Eq. (9)) and
(2) the coefficients of Fourier series of the electric field components tangential
to the sheath surface for spectral discretization (see Eq. (17)).

3.2.1. Linear sheath BC

At the left boundary where s = ex, the y component of the integral
equation (18) is written as∫

ΓS

e−i(lksy+kzz)
[
Ey − ex ·

∂

∂y
(∆shε ·E)

]
dΓ S = 0. (19)

First, let us consider the linear case where the first term on the right-hand
side of Eq. (5) is omitted as being negligibly small. When we approximate
the product of ∆sh and ε, which is defined as χ, using the following Fourier
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series

χ = ∆shε '
NF∑

n=−NF

χS
neinksy, (20)

where

χS
n =

1

Ly

∫ Ly

0

χe−inksydy, (21)

we obtain

ÊS
yl −

min(NF,NF+l)∑
m=max(−NF,−NF+l)

ilks

·
(
χS
xx(l−m)Ê

S
xm + χS

xy(l−m)Ê
S
ym + χS

xz(l−m)Ê
S
zm

)
= 0

(22)

after substituting Eqs. (17) and (20) into Eq. (19). Notice that Eq. (22) does
not include z and t. Also, note that ÊS

xm in Eq. (22) are not independent
variables since only the components of E tangential to the sheath surface (in
this case, Ey and Ez) are expressed as their Fourier series in y as shown in
Eq. (17). In fact, the component of E normal to the sheath surface is a part
of the finite element solution and defined at each grid node on the boundary.
Therefore, the relation between the nodal values of Ex and ÊS

xm is given by

NS
j (y) Ê

(F)
xj '

NF∑
m=−NF

ÊS
xmeimksy, (23)

where NS
j are the piecewise quadratic interpolation functions corresponding

to Eq. (9) and the subscript j denotes the global node number on Γ S. Here
the summation convention applies to the subscript j, and the superscript F
is attached in Ê

(F)
xj to explicitly show that the variable is originated from the

finite element discretization applied to the plasma volume. The expression
for ÊS

xm used in Eq. (22) is then obtained as

ÊS
xm = N̄S

m,jÊ
(F)
xj , (24)

where

N̄S
m,j ≡

1

Ly

∫ Ly

0

NS
j e−imksydy. (25)
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The integral in Eq. (25) can be analytically calculated (see Appendix A).
The z component of the integral equation (18) is discretized in a similar

way, and the result is mostly the same as Eq. (22), except that ÊS
yl → ÊS

zl and
lks → kz. Also, the discretized expressions at the right boundary are obtained
simply by replacing with s = −ex. The system of algebraic equations for
the entire system consists of Eqs. (10), (14), and (22) together with the
contributions of the above-mentioned z component of the sheath BC and the
sheath BC at the right wall.

Since the Fourier coefficients ÊS
τm do not correspond to the nodal values

at the sheath surface, the following conversion is necessary for the finite
element discretization at the boundary:

Ê
(F)
τj

∣∣∣
boundary

=

NF∑
m=−NF

ÊS
τmeimksyj , (26)

where the subscript j denotes the boundary node and yj is its coordinate
value in y.

3.2.2. Nonlinear sheath BC

As a next step, we take into account the nonlinear term in the expression
for the sheath width (see Eq. (5)). Again, let us consider the y component of
the integral equation (18) at the left boundary as an example. Substituting
Eqs. (5) and (17) into Eq. (19) yields

ÊS
ylLy −

∫
ΓS

αsh
∂f

∂y

NF∑
n=−NF

NF∑
m=−NF

κn,m,ldΓ S

−
∫
ΓS

(αshf + βsh)

NF∑
n=−NF

NF∑
m=−NF

i (n+m) ksκn,m,ldΓ S = 0,

(27)

where

αsh =

(
eCsh

Te

)3

λ4De, βsh = CthλDe,

f = |κ|3 , κ =

NF∑
n=−NF

NF∑
m=−NF

κn,m,

κn,m =
(
εSxxnÊ

S
xm + εSxynÊ

S
ym + εSxznÊ

S
zm

)
ei(n+m)ksy,

κn,m,l = κn,me−ilksy.

(28)
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Here, the dielectric tensor ε is expressed using a Fourier series in the same way
as Eq. (20), but without multiplying it by the sheath width. The integrals
in Eq. (27) are numerically evaluated by applying the three-point Gaussian
quadrature rule at each divided segment on the sheath surface. Note that the
number of the segments for numerical integration must be determined so as to
resolve the finest Fourier harmonics (i.e., for |n+m− l| = 3NF). Due to the
nonlinearity, the resultant system of discretized equations must be iteratively
solved; for this purpose, we employ a Newton-Raphson method as in the
previous work [11]. Although the above formulation is based on a flat sheath,
the procedure can be straightforwardly generalized by decomposing the unit
vector s (which is initially defined at each grid node on the boundary) in a
similar way to Eq. (23) and then adding the expression into the discretized
equation. As a reference, the explicit form of the finite element discretization
of the sheath BC for an arbitrarily curved wall is shown in our previous paper
[11].

4. Numerical analysis in 2D slab geometry

In order to assess the capability of the developed numerical scheme, we
consider solutions of the 2D sheath-plasma interaction problems that were
analyzed in our previous work [11, 12]. Fig. 2 shows the problem definition
which corresponds to a simplified geometry of the edge plasma region in-
cluding an antenna in the poloidal cross-section of a tokamak. The origin in
the Cartesian coordinate system is placed at the bottom-left corner of the
domain. The electric field is solved in the plasma volume Ω subject to the
sheath BC on the right-hand side, the absorbing BC on the left-hand side
(if necessary), and a periodic boundary condition that connects the top and
bottom of the domain. The absorbing BC is an outgoing wave condition
and is introduced by inserting a damping layer in the vicinity of the core-
edge plasma boundary. This can be achieved by defining the electron mass
as me (1 + iν/ω) and choosing the artificial collision frequency ν to decrease
exponentially from the core-edge plasma boundary. In the geometry shown
in Fig. 2, ν is described in the following equation:

ν = ν0 exp

(
− x

λν

)
, (29)

where ν0 is the maximum artificial frequency, and λν represents the length
of the damping layer. With this procedure, the actual boundary condition
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on the core side (the left-hand side in Fig. 2) is not important, so that we
can impose the conducting-wall BC, Eτ = 0, for example. More details
are described in Ref. [11]. The antenna surface current is given by a cosine
function in the y direction as follows:

Jext = K (y) δ (x−Dlw-ant) ei(kzz−ωt)ey, (30)

with

K (y) = Kmax cos2
(
πŷ

Lant

)
, (31)

where Kmax is the maximum antenna current density, and ŷ = y − Ly/2. In
both linear and nonlinear problems, the global equation is computed by em-
ploying MUMPS (MUltifrontal Massively Parallel sparse direct Solver) [27]
on the Hopper Cray XE6 computer system at the National Energy Research
Scientific Computing Center (NERSC). The numerical results shown in this
section are on the plane of z = 0 at t = 2πl/ω, where l is an integer.

4.1. Code verification

4.1.1. Verification of the linear scheme

First of all, a numerical result obtained with the combined finite ele-
ment and spectral method is compared with the result given by the previous
numerical approach for the linear (thermal sheath) problem considered in
Ref. [12]. Based on Fig. 2, the calculation domain, antenna length, and its
position are determined such that Lx = 0.6 m, Ly = 0.4 m, Lant = 0.05 m,
and Dlw-ant = 0.57 m. The quasi-neutral plasma density and background
magnetic field are fixed at n0 = 2 × 1018 m−3, B0x = 1.5 T, B0y = 0.5 T,
and B0z = 4 T over the whole domain. In this and subsequent analyses,
the toroidal wavenumber component, kz, is fixed at 10.8 m−1, the electron
temperature is 10 eV, and the applied frequency is 80 MHz. For these pa-
rameters, both fast and slow waves are evanescent away from the antenna.
The calculation domain is divided by a partly uniform mesh which includes
901 × 961 grid points in total; 420 × 480 uniform nine-node elements in
0 ≤ x ≤ Dlw-ant and 30× 480 uniform elements in Dlw-ant ≤ x ≤ Lx are used
in the x and y directions, respectively.

Fig. 3 shows a comparison of the real part of the parallel electric field
component (E‖ = E · B0/ |B0|) along the sheath surface (at x = 0.6 m)
for Kmax = 1 A/m, in which three numerical results obtained by employing
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the previous finite element method (FEM) and the combined finite element
and spectral method (FESM) with NF = 10 and 30 are plotted. Here, the
FEM solution corresponds to the result shown in Ref. [12]. It is seen that the
FESM solution converges on the FEM solution when the cutoff number of
harmonics is sufficiently large (NF = 30), although its accuracy is not enough
for NF = 10. This converged solution profile represents the SPW, which was
investigated through an electrostatic 2D sheath mode analysis in Ref. [12].

4.1.2. Verification of the nonlinear scheme

As a next verification, we consider solving the nonlinear self-consistent
RF sheath problem, which was also analyzed in Ref. [12], by employing the
proposed method. In this problem, the calculation domain, antenna length,
and its position are defined such that Lx = 0.7 m, Ly = 0.3 m, Lant = 0.05
m, and Dlw-ant = 0.65 m. The plasma density is reduced to n0 = 1 × 1017

m−3, which is lower than the lower hybrid density and thus, a SW propagates
in the cold plasma and interacts with the sheath on the material boundary.
Of course, the electric field strength of the SW is enhanced as the antenna
current increases. The other parameters fixed in this analysis are unchanged
from the previous analysis, except that the absorbing region is inserted on
the left-hand side of the domain (ν0 = 3×1011 s−1 and λν = 0.05 m); thus, it
is assumed that the propagating SW is not reflected from the left boundary.
The calculation domain is divided by a uniform mesh which includes 1261×
781 grid points (630 × 390 nine-node elements in the x and y directions,
respectively). For nonlinear calculations in this study, basically the same
convergence criterion as described in the appendix of Ref. [11] is applied.

Fig. 4 compares the variations of the normalized normal component of
the electric displacement, |Dn| /Kmax, along the sheath surface (at x = 0.7
m) for Kmax = 20 and 80 A/m. Again, the FEM solutions correspond to
the results shown in Ref. [12], and the FESM solutions are obtained with
NF = 30. For the FESM calculations, the sheath surface is divided into
180 equally-spaced segments for numerical integration. It is confirmed that
both results for the two different antenna current values are quantitatively in
good agreement. Although this solution profile is not very favorable for the
spectral discretization due to the presence of steep kinks, the wiggles observed
here will not influence the evaluation of sputtering or power losses, etc. and
thus, they do not matter for practical purposes. The normalized quantity
decreases with an increase in the antenna current due to the insulating effect
of the RF sheath at high sheath voltages (see Ref. [12]).
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4.2. RF sheath-plasma interaction for a small contact angle

In Section 4.1, we have confirmed the validity of the proposed method by
comparing the calculated results with the previously obtained finite element
solutions. As a last numerical example, we consider another nonlinear case
where the magnetic field lines intersect with the metal wall at a shallow
angle and demonstrate stability of the new approach as compared with the
previous method.

The shallow-angle case requires careful attention to the grid resolution
perpendicular to the sheath surface. To demonstrate this, we conduct the
analysis of an electrostatic 2D sheath mode assuming a homogeneous plasma
with constant density in the equilibrium state based on the geometry shown
in Fig. 2. The details of this analysis are described in Ref. [12]. Fig. 5 shows
the variations of the real and imaginary parts of kx at the sheath-plasma
interface as functions of the poloidal angle of the background magnetic field
for n0 = 1×1017 m−3. Here, the poloidal angle θp is defined using the poloidal
components of B0 (i.e., tan θp = B0y/B0x) and θp = 0 when the direction
of the poloidal component vector is identical with the positive direction of
the x axis. It is observed that both |Re (kx)| and |Im (kx)| rapidly increase
at two specific angles (θp = π/2, 3π/2) with |Im (kx)| larger than |Re (kx)|.
This indicates that the decay length of the SPW into the plasma, which
is estimated by |Im (kx)|−1, gets smaller as the contact angle between the
magnetic field line and the wall approaches zero and thus, fine grids are
required to resolve the thin decay layer adjacent to the sheath when the
magnetic field lines are close to being parallel to the wall.

With this understanding, let us first calculate a problem for a shallow
contact angle using the original FEM. In this problem, the components of
the background magnetic field are given by B0x = 0.5 T, B0y = 1.5 T,
and B0z = 4 T. In addition, the calculation domain and antenna length
are adjusted to comparable sizes to the Alcator C-Mod tokamak such that
Lx = 1.5 m, Ly = 2.14 m, Lant = 0.44 m, and Dlw-ant = 1.425 m as in
Ref. [11]. The plasma density is assumed to be spatially constant and fixed
at n0 = 1× 1017 m−3, and an absorbing layer is formed at the left boundary
with ν0 = 1 × 1011 s−1 and λν = 0.2 m. For purposes of comparison, the
calculation domain is divided by two different partly uniform meshes which
include 801 × 721 and 901 × 721 grid points; 350 × 360 uniform nine-node
elements in 0 ≤ x ≤ Dlw-ant and 50, 100× 360 uniform elements in Dlw-ant ≤
x ≤ Lx are used in the x and y directions, respectively.
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Fig. 6 compares the variations of |Dn| /Kmax along the sheath surface (at
x = 1.5 m) for Kmax = 300 and 400 A/m, which are obtained with two
different calculation grids. First, as evidently seen, the solution for 400 grid
elements in x unstably oscillates and exhibits a wrong profile in the range of
0.8 < y < 1.1 m at Kmax = 300 A/m. When the grid-scale oscillation evolves
like this, the Newton-Raphson iteration is hardly converged for higher an-
tenna current values. This numerical instability is caused due to insufficient
grid resolution perpendicular to the sheath surface. As evidence of this, the
onset of the collapse in the FEM solution profile occurs at higher antenna
current as the grid resolution in x increases in the vicinity of the sheath,
which is observed in the solution profiles for 450 grid elements in x. To at-
tain a numerical solution for Kmax > 400 A/m, one needs to further increase
the grid resolution to resolve the decay length in the direction perpendicular
to the sheath. Although this is an example for a nonlinear case, the spurious
oscillations can be excited even for a linear case. However, the oscillation
amplitude is much smaller compared to the largest value of |Dn| /Kmax, and
thus, the instability is not obvious in this case.

Next, we apply the proposed method to the same problem with the cal-
culation domain divided by a partly uniform mesh of 801 × 721 grid points
(see above), and the results are shown in Fig. 7. As can be seen, no nu-
merical instability appears in the FESM solution for Kmax = 300 A/m, and
its solution profile is correctly calculated even for a higher antenna current
value, at Kmax = 700 A/m, showing the nonlinear insulating effect of the
sheath, i.e., the reduction in |Dn| /Kmax as Kmax increases. Here, the FESM
solutions are obtained with NF = 30. The reason for being able to conduct
a stable calculation is that the unstable oscillations of the tangential electric
field components are limited to the extent where they are well resolved by
the given grids, owing to the restricted number of harmonics.

When the solution involves a region where numerical instabilities are in-
duced and the electric field strength there is expected to be small (for ex-
ample, “kinks” generated as a result of the collision between a propagating
SW with finite width and a wall), the proposed method can be efficiently
applied to such a case by using a moderate value of NF (which is sufficient
to resolve the profile where the electric field strength is large and physically
important). This feature can be useful when considering a realistic tokamak
simulation, for which a significant number of calculation grids are required
to resolve various important phenomena.
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5. Conclusions

In this paper, we presented a combined finite element and spectral ap-
proach that solves self-consistent RF sheath-plasma interactions in a 2D do-
main for ICRF waves. The scheme is constructed by applying a 2D finite
element method to discretize a combined form of Maxwell’s equations gov-
erning the cold plasma behavior and a 1D spectral method to discretize the
sheath BC at the boundary. It has been shown that the present numerical
approach reproduces the previously obtained numerical results and can be
stably applied to the problem in which a propagating SW interacts with a
material wall at a shallow contact angle and thereby a generated SPW rapidly
decays within a narrow layer adjacent to the sheath. An important feature of
this method is that it prevents unstable grid-scale oscillations from expand-
ing with increase in antenna current by introducing a cutoff in the number
of harmonics in the discretization of the sheath BC.

We have been trying to obtain a physically meaningful solution with
a reasonable grid resolution and a small number of harmonics; this would
allow treating the entire SOL given the limited computer resources. In most
cases, the important quantity in practical operation is the peak of the sheath
potential, not the fine structure where the potential is small. The FESM
method allows us to accurately compute the peak of the sheath potential at
fixed number of harmonics without demanding the same accuracy where the
sheath potential is small and relatively unimportant.

It would also be important to mention some drawbacks of the proposed
method. Due to the spectral discretization of the sheath BC, the conver-
gence of Fourier series in the tangential components of the electric field on
the sheath surface depends on their solution profiles along the boundary.
In some cases, a large number of harmonics could be required to reach the
desired profile there. The increase in number of harmonics leads to an in-
crease in computational time, in particular, for nonlinear cases since the RF-
dominated sheath width is proportional to the cube of the normal electric
displacement and the segment length for numerical integration of the dis-
cretized sheath BC needs to be shortened accordingly to capture the finest
sinusoidal waves. For the above-mentioned cases, the original finite element
treatment of the sheath BC can be more appropriate. Further, one always
has to carefully check whether the results correctly capture any important
physics, which can only be revealed with a sufficient number of calculation
grids in the vicinity of (and/or along) the sheath surface. Therefore, the
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present numerical approach is not intended to replace the previous finite ele-
ment procedure. Instead, both techniques allow us to make a flexible choice
to efficiently solve a wide variety of sheath-plasma interaction problems.
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Appendix A. Calculation of the coefficients N̄S
m,j

The integral shown in Eq. (25) can be analytically calculated for the finite
element interpolation NS

j . Let us consider the contribution from one three-
node grid element which includes the node j. The local quadratic functions
NS
α are defined as

NS
α =

ξαξ

2
(1 + ξαξ) +

(
1− ξ2α

) (
1− ξ2

)
, (A.1)

where −1 ≤ ξ ≤ 1, and the subscript α denotes the local node number
(α = 1, 2, 3); ξ1,2,3 = −1, 1, 0. In each grid element the y coordinate is
expressed as y = ye +(∆y/2) ξ, where ye is the coordinate value at the center
and ∆y is the length of the grid element. Thus, for m 6= 0 the corresponding
integral is calculated as follows:∫ 1

−1

(
2∑

n=0

Cnξ
n

)
eaξ+bdξ =

2∑
n=0

CnF (n) , (A.2)

where

F (n) =

{[
ξn

a
eaξ+b

]1
−1 −

n
a
F (n− 1) for n ≥ 1

1
a

(
ea+b − e−a+b

)
for n = 0,

(A.3)
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with

C0 = 1− ξ2α, C1 =
ξα
2
, C2 =

3

2
ξ2α − 1,

a = −imks
∆y

2
, b = −imksye.

(A.4)

For m = 0, Eq. (A.2) reduces to∫ 1

−1

2∑
n=0

Cnξ
ndξ = 2

(
C0 +

C2

3

)
. (A.5)

Consequently, the coefficient N̄S
m,j for each value of m at fixed j is calculated

by summing the local integrals (or one local integral for α = 3) that include(s)
nonzero part of the shape function NS

j .
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Figure 1: Model geometry for the spectral discretization of the sheath BC.
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Figure 2: Singly periodic slab model to analyze RF sheath-plasma interactions.
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Figure 3: Comparison of the real part of the parallel electric field component on the
thermal sheath between the two different numerical methods.
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Figure 4: Comparison of the normalized normal component of the electric displacement
on the RF sheath between the two different numerical methods for a large contact angle
of the magnetic field line on the sheath surface (sinϑ = 0.35).
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Figure 5: Plot of the real and imaginary parts of kx at the sheath-plasma interface as
functions of the poloidal angle of the background magnetic field for n0 = 1 × 1017 m−3.
The angles of θp = π/2, 3π/2 are when the background magnetic field is tangent to the
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Figure 6: Comparison of the normalized normal component of the electric displacement
obtained by applying the original FEM on two different calculation grids to the analysis
for a small contact angle of the magnetic field line on the sheath surface. The number of
elements denotes the number of total grid elements in the x direction.
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Figure 7: Comparison of the normalized normal component of the electric displacement
on the RF sheath between the two different numerical methods for a small contact angle
of the magnetic field line on the sheath surface (sinϑ = 0.12).
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