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1. INTRODUCTION 

 This paper describes recent developments in the theory of blob transport at high 
collisionality, Λ = (νeiL||/ρsΩe) ~ 1, and its application to the convective density limit on 
Alcator C-Mod. The original sheath-connected blob model1 described how coherent 
structures created by edge turbulence would charge up (due to ∇B and curvature drifts) and 
E×B drift across the far SOL. This model accounted for several qualitative observations 
about SOL turbulence, such as its spatial and temporal intermittency and non-diffusive 
SOL transport of particles and energy.  
 Several other blob parameter regimes have been identified,2 which are relevant in 
the highly turbulent blob creation zone in the near SOL.  In each regime, the radial blob 
velocity vx has a known scaling with plasma parameters and with the blob radius ab.  This 
picture is unified by a simple correspondence rule between the linear dispersion relation of 
the underlying instability driving the turbulence and the blob parameters: 
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bb
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a
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where γ and k⊥ are the linear instability growth rate and wavenumber, and Ln is the density 
gradient scale length. This rule is obtained by assuming that the same physics drives the 
instability and the motion of the blob and by using a wave-breaking condition ( vk~ ⋅ω ) 
for saturation of the turbulence. One simple way to understand and visualize the diverse 
regimes is by considering the effective electrical circuit2 of the current path satisfying 

0=⋅∇ J  with the curvature drift providing a fixed source current; the effective resistivity 
of the circuit to loss currents determines γ (in linear theory) and vx (in the nonlinear 
regime). This idea and the scaling in Eq. (1) makes explicit the correspondence between 
linear stability and turbulent transport noted in Ref. 3 for sheath-driven interchange modes 
and generalizes it to more collisional instability regimes. 

2. THEORY AND SIMULATIONS 

 3D simulations4,5 and theoretical models2,6 have investigated several of the blob 
regimes and have shown that increasing the collisionality parameter Λ leads to electrical 
and thermal disconnection of the blobs from the sheaths. Disconnection increases the 
effective resistivity of the “blob circuit” (∝ Λ) and leads to faster radial propagation. In the 



transition from the sheath-connected1 (SC) regime to the resistive ballooning (RB) regime, 
the blob velocity is given by the resistive X-point (RX) regime scaling2,4 

 2
bx a/qv Λ=   (2) 

in Bohm units (v → v/cs, L → L/ρs) with q = L||/R.  For Λ >  Λcrit ≡ min[1, εx Ω], the RX 
mode physics is important (see below) and vx ∝ Λ showing that the blobs move faster as 
the collisionality increases. Here, Ω = (ab/a*)5/2, a* = L||2/5 / R1/5 (in Bohm units) and εx << 
1 is a “fanning factor” associated with the flux tube geometry near the X-point. In the RX 
regime, the current cannot flow along B because of the larger parallel resistivity; the current 
loop closes via the ion polarization current, J⊥pol near the X-points. The flow of J⊥ is 
facilitated by the distortion of the flux tube into a thin fan near the X-point6,7 (note the 
factor εx in Λcrit). For very large collisionality (Λ → ∞), J⊥pol closes the turbulent current 
loop in the midplane region (strong ballooning regime).8 Here, for fixed geometry we are 
interested in exploring the dependence of the transport on parameter space: (Λ, Ω) for 
initialized blobs and Λ for turbulence, which generates a range of scale sizes. 

 

Fig. 1 Time history of the turbulent (blob) particle 
transport for two values of the collisionality 
parameter Λ0  (Λ0 = Λ measured at the top of the 
density pedestal). Note the earlier onset of the 
nonlinear turbulent phase and the much larger 
particle flux for large Λ0. 

 For this purpose, we use a new 2-point 2D model that gives a reduced description of 
3D turbulence.9 Implemented in a new version of the Lodestar SOLT code, a 2D simulation 
evolving (n, Φ) is carried out at two points along the field line (midplane and divertor) with 
boundary terms connecting the two regions. A dimensionless scaling analysis of the 
equations shows there are two invariant parameters (collisionality Λ and scale length, 
represented by Ω).  The propagation of initialized cylindrical blobs [with density n ~ 
exp(−r2/ab2)] was simulated as a function of  Λ and Ω  retaining both regions, and it was 
shown that the numerical vx agreed well with the analytic “blob dispersion relation” 
obtained from Eq. (1). Fully-turbulent simulations have studied the evolution of randomly 
seeded noise using a particle source term to maintain the profile gradient at the last closed 
flux surface. It is found that the qualitative character of the turbulence is sensitive to 
collisionality. Consistent with experiments10,11 and 3D simulations,4,5 the two-region code 
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shows a dramatic increase in the midplane fluctuating fields and turbulent particle flux 

yxv~n~  with collisionality (see Fig. 1) due to disconnection (the ratio of fluctuating fields 
in the divertor region to that in the midplane region decreases for larger Λ). A wavelet 
analysis of the blob size distribution shows that the most probable blob size, <ab>, 
increases with Λ, and the dependence of <vx> on <ab>   shows the qualitative dependence 
on Λ expected from the collisional blob theory. 

3. DENSITY LIMIT MODEL 

 A similar two-point model for (T, Φ) was used in an analytic study of SOL heat 
balance and thermal density limits,12 motivated by experiments on Alcator C-Mod.10,11 

Assuming a cross-field heat flux 2/
21 T/Tq νµ

⊥ ∝ , the model exhibits a bifurcated 
equilibrium with warm and cold X-point roots when µ>ν 2 . (The subscript denotes the 
region: 1 = midplane, 2 = divertor.) The normalized equilibrium heat fluxes for the two 
roots are plotted vs the parameter C⊥ in Fig. 2, taken from Ref. 12. Here, 2

1nC ∝⊥  
measures the cross-field blob transport (∝ Λ in the RX-mode regime). The blob heat 
transport term ( 2/3

21 T/TC⊥∝ ) adds the cold X-point root to the model. The warm X-point 
root is thermally stable, but the cold X-point root is thermally unstable (suffers thermal 
collapse), so their merger point defines an equilibrium limit on the SOL density (and 
collisionality). The thermal instability of the X-point in this model is analogous to an X-
point Marfe, except that here the cooling is caused by turbulent (blob) heat transport rather 
than radiation. Note in Fig. 2 that Q⊥/Q|| increases with C⊥ and the stable (observable) hot 
X-point root reaches the equilibrium limit just after Q⊥ exceeds Q||, as observed on C-Mod. 
In fact, there is remarkable qualitative agreement between Fig. 2 and the data (compare 
with Fig. 18 of Ref. 11). There are several other points of agreement between the 
convective density limit model and the C-Mod experiments, as discussed in Ref. 12.  

 
Fig. 2 Normalized heat flows Q⊥, Q|| vs ⊥C in 
thermal equilibrium for  the “warm X-point” 
root (solid curves), and the “cold X-point” root 
(dashed). For the stable and physically-
observable warm X-point root, Q⊥ exceeds Q||  

just before the equilibrium limit is reached, as 
observed in C-Mod. 



4. SUMMARY AND DISCUSSION 

 We have described a new 2-point (midplane, divertor) 2D SOL model which is 
useful for both analytic and numerical studies of blobs with structure along B. An important 
physics result of these studies is collisional disconnection by ion polarization currents, 
which results in a strong dependence of the turbulent transport on collisionality (see Fig. 1). 
Computations with this extended 2D model are much faster than running full 3D codes. In 
future work, the model will be extended to include parallel magnetic shear and the physics 
determining the blob size distribution and other statistics will be studied in detail. 
  New collisional blob regimes have been discussed which are valid in the blob 
creation zone (in the near SOL and edge) and allow description of strong resistive-
ballooning turbulence. At high collisionality the turbulence has a shorter correlation length 
(L||  ~ λei) along the B field and is not affected by whether the blob flux tube terminates in a 
sheath, passes an X-point or is part of a closed magnetic surface. In this limit, the physics of 
edge and SOL merge, the convective SOL transport moves across the last closed flux 
surface into the plasma edge, and the core confinement rapidly deteriorates. Thus, the 
collisional blob theory discussed in this paper agrees with the observed increase of edge 
turbulent transport with collisionality (see Fig. 1) and provides a mechanism for the 
convective density limit observed on C-Mod (see Fig. 2).   
 Finally, we note that in the collisional limit the blob theory agrees with standard 
turbulent transport estimates. It can be shown that the radial particle flux estimated from 
blob theory, xvn~Γ , agrees in order of magnitude with  mixing length theory, 

)Lk/(n~]v~n~Re[~ n
2

x ⊥
∗ γΓ , when the blob correspondence rule (1) is used [e.g. see the 

discussion after Eq. (24) in Ref. 12].  
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