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Abstract 
The effect of discrete plasma transport by coherent structures on nonlinear 

interactions in the scrape-off-layer (SOL) is illustrated by a simple model problem.  A 

one-dimensional ballistic model is studied in which a periodic train of plasma blobs 

creates a series of discrete pulses of neutral atoms by sputtering of a high-Z wall. 

Collisions between the neutral pulses and blobs lead to ionization of the high-Z atoms, 

convective transport back to the wall, and subsequent self-sputtering. An analytic 

condition for high-Z impurity avalanche is calculated and evaluated taking into account 

the effect of the temperature nonlinearity of the ionization rate.  It is shown that the 

discreteness of the blob particle and energy transport leads to quite different results than a 

continuum model with the same average density and temperature. Similar effects are 

expected in fully intermittent transport due to turbulence or edge localized modes (ELMs) 

in the SOL of tokamaks. The model calculations also illustrate a potentially important 

interaction between high-power radiofrequency antennas and high-Z walls. 

PACS numbers: 52.35.Ra, 52.25.Vy, 52.40.Hf, 52.55.Fa 
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 A great deal of theoretical and experimental work has shown that convective 

transport by turbulent coherent structures [e.g. blobs or Edge Localized Modes (ELMs)] 

dominates the particle and energy transport in the far scrape-off-layer (SOL) of 

tokamaks. (See Refs. 1 and 2 for recent reviews.) As a result, the electron density ne and 

temperature Te in the far SOL are spatially and temporally discrete and intermittent, and 

interactions that are nonlinear in these field variables are not well described in the 

continuum or time-averaged limit.2  This problem can be expressed as 

  ( )Qf)Q(f ≠   , (1) 

where <…> denotes a time average (or a toroidal average) over the fast-scale turbulence, 

and f is any nonlinear function of the quantity Q. This problem has not yet received much 

attention. In the present note, we study how large the discrepancy is in Eq. (1) for a 

simple model problem of some practical importance.  

The model problem chosen here is to calculate the condition for high-Z impurity 

avalanche due to self-sputtering of a high-Z wall, where the dominant nonlinearity is the 

temperature dependence of the ionization rate. The avalanche process requires that 

sputtered high-Z neutrals from the wall ionize and return to the wall to sputter more 

neutrals. Qualitatively, we know that impurity avalanche requires a sputtering yield Y 

greater than unity, which in turn requires energetic, high-Z ions. Low-Z materials have Y 

<< 1, and even high-Z ions need energies in excess of several hundred eV to yield 

significant self-sputtering.3 It has been inferred from previous experiments4,5 that self-

sputtering avalanche can occur in the vicinity of  high-power ion cyclotron range of 

frequency (ICRF) antennas which contain high-Z components. Thus, this problem may 

be relevant to ITER (the International Thermonuclear Experimental Reactor)6 which is 

considering the possibility of having ICRF antennas mounted near a high-Z first wall.7   

 The goal of the present calculation is not to obtain quantitative information, but to 

assess qualitatively whether (i) intermittency effects require a significant modification of 
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the usual transport code description, and (ii) whether blob- or ELM-induced self-

sputtering of a high-Z wall is an issue that should be studied with more detailed and 

quantitative codes.  In the rest of this note, we will use the term “blobs” to refer to the 

discrete plasma objects in the SOL with the understanding that the same physics applies 

to ELMs as well. 

 The one-dimensional (1D) model used here retains only variation in the radial 

direction,  x = R – Rsep, and the trajectories x(t) determine the location of the blob-neutral 

interactions. The SOL is assumed to extend from x = 0 (separatrix) to xw (wall). The 

trajectories of the “world lines” and a schematic drawing of the model are given in Fig. 1. 

The blobs move from left to right, i.e. away from the last closed surface and towards the 

wall, with constant velocity vxb (solid lines) and the sputtered neutrals move from right to 

left, i.e. away from the wall and towards the core plasma, with constant velocity vx0 

(dashed lines). The number p of vertices in the SOL, i.e. intersection points between the 

blob and neutral world lines computed following a neutral pulse (black dots in Fig. 1), is 

given by  
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Here, pτ  is the time between consecutive blobs, ∗v  is a hybrid ion-neutral velocity, and p 

is the largest integer bounded from above by )v/(x pw τ∗ . For the case sketched in Fig. 1, 

we see that p = 2.  

 Each blob interacts with the high-Z material in two ways. First, the blob creates a 

localized cloud or pulse of high-Z neutrals by (self) sputtering at the wall (this is 

discussed in more detail subsequently); second, other blobs collide with this neutral pulse 

(at the vertices shown in the figure) and partially ionize it. The plasma density in the 

blobs is assumed to be much larger than the background plasma, and effects of the 

background plasma are neglected. (Here, for simplicity we consider a single ionization 



   
 

 4 

state, e.g. the first ionization state of each neutral atom.) The high-Z ions created in this 

way are assumed to be entrained by the internal electric field of the blob and to move 

back towards the wall with the same E × B velocity as the background plasma density. 

These entrained high-Z ions are the source of the self-sputtering computed in the model. 

Any high-Z neutral atoms not ionized in this initial collision continue to stream inwards 

towards the plasma and undergo additional ionization interactions with later blobs (at 

subsequent vertices shown in the figure). This results in a “ballistic” model, i.e. the 

ionization interaction is discrete in both space and time and depends on the trajectories of 

the blobs and neutral pulses.  

 Rather than treating a truly intermittent problem (in the sense of turbulence 

statistics), we use a periodic train of blobs to represent the discrete nature of the 

interactions in space and time. This is sufficient for present purposes. Each blob is 

modeled as a square pulse of radial width 2ab and the blobs are spaced a distance 

pxbb vx τ=∆  apart, where pτ  is the period of the blob train. An important parameter 

characterizing the intermittency is the “packing fraction” 10 b <δ<  of the blobs, defined 

here to be 

 
b

b

eb

e
b x

a2
n
n

∆
=≡δ   , (3) 

where ebn is the local electron density in the blob and en  is the time-averaged density of 

the blob train. The resulting neutral pulses created by sputtering are also treated as a train 

of square pulses, each one initiated by the arrival of a blob at the wall.   

 For definiteness, let us consider a deuterium (D) plasma and a molybdenum (Mo) 

wall. The sputtering of D on Mo will not be very effective because of the atomic mass 

difference, but will provide a seed of high-Z Mo atoms that can in turn be ionized and 

produce sputtering by Mo ions impacting the Mo wall (i.e. “self-sputtering” of the wall 

material). The question to be answered by our model is whether the concentration of wall 
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atoms will grow, leading to a high-Z “self-sputtering avalanche”, or decrease in time. We 

neglect the seeding process and formulate the model as an eigenvalue problem for the 

gain or growth factor per period, peg γτ= , and the corresponding growth rate, 

p/gln τ=γ , where the blob train period pτ  is chosen as a typical waiting time between 

blob emissions. The avalanche condition is g > 1 or 0>γ . Referring again to Fig. 1, we 

note that the number of high-Z atoms (and ions) is multiplied by the factor g  when the 

time is advanced by pτ . 

  The sputtering and rf physics issues are characterized as follows. Let Y = Y(E) 

denote the Mo self-sputtering yield (number of sputtered atoms per incident ion) for an 

ion with energy E hitting the wall.  As in previous work,4 we use published data for the 

sputtering yield Y90(E) at 90 degree (normal) incidence.8 In the far SOL, the ions flow 

along field lines which are almost tangent to the wall, so we multiply Y90 by a factor of 

2, i.e. Y = 2 Y90(E),  to account for the larger sputtering yield at glancing incidence.4 

 For the ion energy, we choose E = 500 eV, which is a typical value for ions 

accelerated in rf sheath potentials. (A review of rf sheath physics can be found in Ref. 9. ) 

The component of the rf field parallel to the equilibrium magnetic field B accelerates 

electrons out of the plasma, inducing a large rf sheath potential eBohmrf T3~Φ>>Φ  to 

confine the electrons and preserve ambipolarity. This sheath potential confines all but the 

most energetic electrons, and accelerates ions into the wall with high energy. Thus, the 

energy E is the rf sheath physics input to the present model, and reflects the fact that we 

are modeling the part of the high-Z wall which is in contact with field lines passing in 

front of a high-power ICRF antenna and having high sheath voltages at the contact 

points.  

 Ionization physics (only a single ionization state) is included in the model as 

follows. For simplicity, we neglect losses of heat and particle by transport along field 

lines, so that the blob density neb and temperature Teb are assumed constant as the blob 

moves across the SOL. This approximation is valid in the limit of rapid cross-field 
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convection, E||p||xbw andv/x ττ<< , where E||s||p|| andc/L τ=τ  are the parallel 

particle and electron energy confinement times, and is sufficient for illustrating the 

physics of interest here. This assumption implies that the fraction f of neutrals ionized 

during each blob-neutral pulse collision (i.e. at each vertex in the model) is constant, and 

this permits simple analytic formulas. The generalization to a numerical code including 

parallel losses is straightforward but unenlightening. The ionization fraction f  (defined 

such that 0 < f < 1) can be taken as a constant input parameter to the model, or it can be 

expressed in terms of more basic parameters as 

 iie1f τν−−=    ,    
xb0x

b
i vv

a2
+

=τ     , (4) 

where  iei vn >σ<=ν  is the ionization rate and iτ  is the interaction time between a 

neutral atom and a blob (in the rest frame of the neutral  atom). We use a published 

formula and atomic physics data10 to compute the ionization cross-section for the first 

ionization state of Mo. 

 The equations for our discrete model are given as follows. In Fig. 1, the variables 

Nj and Zj denote the number of high-Z neutral atoms and ions, respectively, at the jth 

vertex. Unless otherwise noted, we henceforth omit the qualifier “high-Z” because it is 

understood that the model only tracks the wall atoms and ions. We follow the evolution 

of the ballistic interaction between the ions and neutrals starting with a reference vertex 

where Z1/g ions hit the wall and generate N0 neutrals. The equation for the number of 

neutrals sputtered at the wall (j = 1) by the ions in this blob is 

 
g

YZN 1
0 =   . (5) 

At interior vertices in the SOL , there are two conditions on the ions and neutrals.  For j = 

1, 2, … p - 1,  the number of neutrals free-streaming through the jth vertex is diminished 

by ionization of the neutral pulse: 
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 1jj N)f1(N −−=   . (6) 

For j = 2, 3… p - 1, the number of ions ( g/Zj ) already entrained in the blob and passing 

through the (j -1) vertex are enhanced by ionization of the neutral pulse from the previous 

(j – 2) vertex: 

 )NfZ(gZ 2j1jj −− −=   . (7) 

At the last vertex in the SOL (j = p), we assume no pass-through of high-Z ions from the 

core into the SOL, so that Zp is due entirely to ionization of SOL neutrals: 

 1pp NfZ −=  (8) 

We complete the system of equation by choosing the normalization  

 1N0 =    . (9) 

This set of equations yields a geometric series which can be summed to give the 

following analytic dispersion relation for the growth factor g:   

 
Yf

g
1gf
)f1(g ppp

=
−+
−−   , (10) 

where the ionization fraction f, sputtering yield Y and number of vertices p are assumed 

to be given.  The growth rate of the sputtered neutrals (normalized to blob train period) is 

then given by 

 glnp =τγ     . (11) 

 It is useful to solve this dispersion relation analytically in limiting cases. First, we 

note that the factor p)f1( −  can be neglected in two limits: (i) 1f →  (strong ionization), 

and (ii) ∞→p  for fixed f (closely packed blobs). In both cases we obtain  

)1Y(f1g −+= , implying that the high-Z impurity avalanche condition (g > 1) requires 

1Y > .  If 1)1Y(f <<− , the growth rate for this case is given by )1Y(fp −≈τγ .  In the 

limit 1p → , where infrequent blob production is described by a single vertex model, one 
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obtains Yfg = and avalanche requires f/1Y > , which is much harder to satisfy. Thus, 

the physics in this model problem depends on the number of interactions (vertices) and 

thus on the discreteness of the transport.   

 We have also examined the correspondence between the growth rate calculated 

from our discrete interaction model in the limit ∞→p  and the value of γ obtained in the 

continuum limit by solving the following fluid equations 

 0i
0

0x
0 n

x
nv

t
n ν−=

∂
∂−

∂
∂    , (12) 

 0i
z

xb
z n

x
nv

t
n ν=

∂
∂+

∂
∂    , (13) 

for the density n0 of high-Z neutral atoms and nz of high-Z ions subject to two boundary 

conditions: xbz0x0 vYnvn =  (self-sputtering relation) at the wall (x = xw) and 0n z =  

(no high-Z ions inside the confined plasma) at the last closed flux surface (x = 0). The 

dispersion relation of this continuum model has the form 

 [ ] 1e1
)ˆˆ(

ˆY )ˆˆ( =−
ν+γ

ν ν+γ−  (14) 

where *w v/xˆ γ≡γ , 0xwi v/xˆ ν≡ν  and iei vn >σ<=ν .  

 To make the desired correspondence, we consider the discrete model in the limit 

where there is a large number of small interactions. Thus, we let p/ff 1=  and p/1pp τ=τ  

and take the limit ∞→p  with f1 and τp1 held fixed. In this limit Eq. (10) yields 

 
Yf

e
f

ee

1

1p

1p1

1f1p τγ−γτ

=
τγ+

−   , (15) 

Expanding Eq. (4) gives iif τν≈ , which is small because p/1abi ∝∝τ  where fixed bδ  

was assumed. Using the definitions given previously, one can rewrite this linearized 

result for f in the following form 
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xb0x

1pib
1

xb0x

pib

v/v1
f

v/v1
f

+
τνδ

=⇒
+

τνδ
=     . (16) 

Finally, after some algebra using Eq. (2), one can show that 1p*w v/xˆ τγ=γ≡γ  and 

b10xwi /fv/xˆ δ=ν≡ν . Substituting these results into Eq. (14) yields Eq. (15) in the 

limits ∞→p  and 1b →δ . Thus, the discrete model corresponds to the usual continuum 

(fluid) model in the limit where the number of vertices becomes large and the blobs are 

tightly packed. In this continuum limit, we find that )1g(ppˆ p −→γτ=γ . We are 

interested in investigating how the solution changes in the discrete limit 0b →δ . 

  The analysis requires that we solve Eq. (10) numerically, with the sputtering 

yield Y and ionization fraction f evaluated for Mo using empirical sputtering8 and 

ionization10 models. We will illustrate the dependence of the high-Z species growth rate 

on both the discreteness ( bδ ) and the blob electron temperature Teb. In varying the 

discreteness, we hold the mean density en and temperature eT  fixed so that the local 

density and temperature of the blob (or ELM) scale with the relevant packing fraction: 

 
T

e
eb

b

e

n

e
eb

TT,nnn
δ

=
δ

≡
δ

=   . (17) 

These relations simply express the fact that the local blob density and temperature exceed 

the mean values (in time or space) when the transport is discrete or intermittent. There is 

a “spikiness” to the density and temperature profiles, as typically observed on probes in 

the far SOL. This relation is clear for the density.  In the case of the temperature, the 

argument is less clear. If we imagine that the SOL is filled with a cold, low-density 

plasma, then the concept of an average temperature makes sense, and in the discrete limit 

we expect that 1T <<δ . For simplicity, we set bnT δ≡δ=δ  in the numerical work, 

where bδ  is defined in Eq. (3). Here, the assumption of strong convective cross-field 

transport, E||xbw v/x τ<< ,  is crucial to the assertion of temperature discreteness. 
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 For the numerical work, we use the following parameters: 311
e cm105n −×=  

(average SOL density); xw = 8 cm (SOL width), ab = 1 cm (blob radius);  

s/cm10v 5
xb =  10  (blob velocity);  s/cm10v 5

0x =  10 (Mo neutral velocity), which 

corresponds to a sputtered neutral temperature of 1 eV; and E = 500 eV (kinetic energy of 

Mo ions impacting the wall). Including the factor of 2 enhancement of Y for glancing 

angle impact (discussed previously), we find Y ≈ 2 Y90(E) = 1.8 for Mo. The local 

ionization fraction in the blob, f(neb, Teb), is computed from Eqs. (4) and (17) holding 

ee Tandn  fixed.  As we vary the packing fraction bδ ,  the number of vertices in the SOL 

is given by [see Eqs. (2) and (3)] 

 
intcrit

b

int
b

*

xb

b

w
v
v

a2
xp ⎥

⎦

⎤
⎢
⎣

⎡
δ
δ≡⎥

⎦

⎤
⎢
⎣

⎡
δ=   , (18) 

and scales as bp δ∝ ; it follows that there are no blob - neutral pulse interactions in the 

SOL (i.e. p < 1) below a critical value, intxb*wbcritb )]v/v)(x/a2[(=δ<δ . 

 Figure 2(a) shows how the ionization fraction varies with the intermittency 

parameter for two values of the average temperature, eT  = 1 and 10 eV; Fig. 2(b) shows 

the variation in the normalized growth rate *w v/xˆ γ≡γ  of high-Z (Mo) impurities in the 

SOL. The maximum variation among the curves occurs as 1b →δ , for which the bottom 

curve ( ione ET << ) has negligible ionization (f = 0) and is thus stable to impurity 

avalanche. (Here, Eion denotes the ionization energy, which is about 7 eV for the lowest 

ionization state of Mo.) The other curve has ione E~T  so that the ionization fraction is 

substantial, even in the limit 1b →δ , and is unstable to avalanche ( 0ˆ >γ ). In both cases, 

as the discreteness increases ( 0b →δ ) at fixed average density and temperature, the local 

blob density and temperature increase, and hence the ionization fraction f  increases, as 

shown in Fig. 2(a). Eventually, at small packing fraction even the low temperature curve 

goes unstable to avalanche in this 1D model, as shown in Fig. 2(b)  (but see the 

discussion below of 2D effects). Heuristically, this effect is described by eff,ib~f νδ , 
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where the effective ionization rate is defined as )/T,/n()T,n( bebeieeeff,i δδν=ν . Using 

an approximate ionization model, and taking the  time average defined in Eq. (1), gives 

the scaling ( )eionbe T/Eexpn~f δ−  ≠ ( )eione T/Eexpn − . 

 In Fig. 2(b), we compare the discrete and continuum solutions and illustrate the 

behavior of the discrete solution as a function of blob packing fraction. The continuum 

solution for the two temperatures is given by Eq. (14) and is indicated in Fig. 2(b) by the 

two red dots. Note that the limit 1b →δ  of the discrete model does not exactly coincide 

with the continuum solution, especially for the higher temperature case. Using Eq. (18) 

one can show that the number of vertices is 7p ≈  at 1b =δ  for the parameters used here, 

and thus does not satisfy the other condition ( ∞→p ) for the continuum limit. As an 

exercise, we have verified that choosing the (untypical) value ab = 0.1 cm yields p = 79 at 

1b =δ  and gives excellent agreement between the discrete and continuum results.  

 We note that there are two competing effects determining γ̂ . First, the sawtooth 

pattern in growth rate in Fig. 2(b) is due to the addition of another blob-neutral pulse 

ionization event ( 1nn +→ ) as bδ  increases, which tends to increase the growth rate. On 

the other hand, Eq. (17) implies that neb and Teb decrease as bδ  increases (when the 

average values ee Tandn  are held constant), which reduces the growth rate. This figure 

shows that the the former effect dominates at high eT  and the latter effect wins at low eT . 

 The main point of our paper is perhaps best illustrated by Fig. 2(b), which shows 

that the discrete (low bδ ) and continuum limits ( 1b =δ ) are quite different. In the 

continuum case, the eT  = 1 eV case is stable and the eT  = 10 eV is unstable with a large 

growth rate. In the opposite limit, 1bcrit <<δ≤δ , the system is unstable to sputtering 

avalanche (but with relatively small growth rates) for both temperatures. Finally, the 

possibility of avalanche disappears when p < 1 and critb δ<δ , implying that the neutral 

pulse can stream across the SOL without encountering any blobs to ionize it. (This occurs 

in the region to the left of the dashed vertical line in Fig. 2b.) Thus, depending on the 

plasma and turbulence parameters, the discreteness effects can either greatly enhance or 
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reduce the possibility of impurity avalanche as compared with the continuum model. This 

illustrates the difficulty in doing these estimates with a transport code.  

 In conclusion, using a simple 1D ballistic model, we have investigated a typical 

nonlinear interaction of discrete particle and energy transport by blobs (or ELMs) with 

the first wall. We studied the effect of the ionization nonlinearity on the self-sputtering 

avalanche of the wall, assuming (i) a high-Z wall material, and (ii) large rf sheath 

potentials caused by ICRF heating. This problem illustrates both the complicated 

interaction of intermittent transport with nonlinearities [see Eq. (1)] and the fact that 

nonlinear rf effects (such as sheath formation) can interact in potentially important ways 

with edge turbulence. This is a largely unexplored subject. 

 The most important specific result of this calculation is the dispersion relation in 

Eq. (10), which shows analytically that the avalanche condition depends on the 

discreteness of the transport. This conclusion suggests that discrete (blobby or ELMy) 

intermittent transport should be included in realistic 2D impurity codes, especially in 

doing assessments of ITER, although it is not yet clear how to incorporate such effects in 

general within a 2D slow-time-scale framework. 

 When our 1D model is evaluated for a molybdenum wall, the numerical results 

indicate that high-Z avalanche can occur for reasonable parameters when steady transport 

is replaced by a small number of infrequent but very large plasma objects hitting the wall. 

This may be particularly important when the SOL transport is caused by ELMs (e.g. see 

the fast camera imaging results in Ref. 11). However, the present model cannot be used to 

make quantitative predictions because of a number of omitted effects, including both 

parallel transport and 2D effects. A 2D model is essential because consecutive blobs can 

be created at different poloidal locations, introducing an additional discreteness in the 

poloidal direction. This will reduce the number of effective blob-neutral interactions, 

implying an even greater role for the type of discreteness effects considered here. 
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Figure Captions 
 
Fig. 1  (Color online) Sketch of the world lines in the SOL for the plasma blobs (red 

dashed lines) and the sputtered high-Z neutral pulses (green solid lines). The left 

boundary is the last closed surface, and the right boundary is the high-Z wall. 

Ionization interactions between blobs and neutral pulses for one sample line-

segment occur at the black dots and the sputtering interaction is indicated by a 

cross. As time elapses, the growth in number of high-Z ions (Zj) and high-Z 

neutrals (Nj) per period is denoted by the factor g, which is the eigenvalue of the 

dispersion relation derived in the text. The case shown has two ionization 

interactions in the SOL (p = 2). 

Fig. 2  (Color online) (a) the ionization fraction f and (b) the normalized growth rate 

*w v/xˆ γ≡γ  of high-Z (Mo) impurities in the SOL vs the blob packing fraction 

bδ  for two values of the average blob temperature, eT = 1 eV (solid black line) 

and 10 eV (dashed blue line). In (b) the horizontal line indicates the marginal 

stability point ( 0ˆ =γ ) and the vertical dashed line indicates the value of critδ  (no 

ionization occurs for  critb δ<δ ). The two red dots indicate the solution of the 

continuum model equation, Eq. (14), for the two temperatures. 
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Fig. 1  (Color online) Sketch of the world lines in the SOL for the plasma blobs (red dashed lines) 

and the sputtered high-Z neutral pulses (green solid lines). The left boundary is the last 

closed surface, and the right boundary is the high-Z wall. Ionization interactions between 

blobs and neutral pulses for one sample line-segment occur at the black dots and the 

sputtering interaction is indicated by a cross. As time elapses, the growth in number of 

high-Z ions (Zj) and high-Z neutrals (Nj) per period is denoted by the factor g, which is the 

eigenvalue of the dispersion relation derived in the text. The case shown has two 

ionization interactions (p = 2) in the SOL. 
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Fig. 2  (Color online) (a) the ionization fraction f and (b) the normalized growth rate *w v/xˆ γ≡γ  

of high-Z (Mo) impurities in the SOL vs the blob packing fraction bδ  for two values of the 

average blob temperature, eT = 1 eV (solid black line) and 10 eV (dashed blue line). In 

(b) the horizontal line indicates the marginal stability point ( 0ˆ =γ ) and the vertical 

dashed line indicates the value of critδ  (no ionization occurs for  critb δ<δ ). The two red 

dots indicate the solution of the continuum model equation, Eq. (14), for the two 

temperatures. 
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