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Abstract 

 An analytic model is derived for electromagnetic radio-frequency (rf) wave 

propagation in a waveguide filled by a tenuous plasma with a slightly tilted equilibrium 

magnetic field B, i.e. B/Bb yy =  << 1.  The calculation includes the self-consistent 

coupling between the rf fields and the sheaths at the sheath-plasma interface, and can be 

used to describe antenna sheath formation in the ion cyclotron range of frequencies 

(ICRF). The sheaths are treated as thin vacuum regions separating the plasma and metal 

wall.  It is shown that (i) the launched fast wave is coupled parasitically to the slow wave 

by the magnetic field structure when 0by ≠  and by the sheath BC; (ii) the sheath voltage 

Vsh is dependent on the wave parity (the “antenna phasing”); and (iii) integrating the 

vacuum rf fields, ∫−= )vac(
||vac EdzV , gives an overestimate of the sheath voltage. An 

expression for the self-consistent Vsh including plasma effects and satisfying the Child-

Langmuir Law is obtained.    

        

PACS numbers: 52.35.Mw, 52.40.Kh, 52.50.Qt, 52.55.Fa   
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Introduction 

 Radiofrequency (rf) waves in the ion cyclotron range of frequencies (ICRF) have 

been used to heat and drive current successfully in many fusion experiments. In designing 

and operating such an rf system, one of the important areas of optimization is to reduce 

deleterious antenna-edge plasma interactions. Launching megawatts of fast wave (FW) 

power into the scrape-off-layer (SOL) plasma can lead to strongly nonlinear interactions 

associated with the unwanted but parasitically-coupled slow wave (SW). A review of the 

early history of observed antenna-plasma interactions in experiments is given in Ref. 1 

and a review of important nonlinear mechanisms is given in Ref. 2. About twenty years 

ago, it was realized that one of the most important interactions with high-power ICRF 

antennas in tokamaks is the formation of high-voltage rf sheaths induced by the parasitic 

SW.3-7  The SW polarization has a substantial rf electric field component (E||) parallel to 

B; the E|| component accelerates electron losses along open field lines into nearby 

boundaries, and a large sheath potential forms to restore ambipolarity by confining 

electrons. The dc sheath potential accelerates ions out of the plasma, causing material 

damage to the walls by sputtering and local heating, and also resulting in a parasitic 

power loss (often referred to as “sheath power dissipation”).2   

 The generation of the parasitic SW occurs when the local magnetic field line does 

not have perfect alignment, i.e. it is not orthogonal to the current straps of the antenna 

and/or not parallel to the conducting boundaries (antenna, limiters and wall). The former 

effect drives the SW electric field directly, and the latter effect requires the coupling of 

SW to FW to allow the rf electric field boundary conditions8,9 (BC) to be satisfied. The 

strength of the SW and the resulting sheath potential depends on the antenna phasing, the 

magnetic geometry, the local plasma density, and other parameters.  

 Early explorations of sheath formation on antennas7,10 (and subsequent studies) 

used a “vacuum rf field sheath approximation”, in which the oscillating (ac) sheath 
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voltage V was estimated by integrating the E|| component of the vacuum rf electric field 

along each field line between contact points, i.e. ∫= ||EdsV . This approach has been 

very useful in developing a qualitative understanding, and it has been implemented as a 

diagnostic in several 3D antenna codes.10-12  However, quantitative results require that 

the rf field calculation take into account the presence of plasma and ensure that the rf 

field satisfies a sheath BC at the conducting surfaces. In the simplest model,9 the sheath 

is treated as a thin vacuum region separating the plasma from the conducting wall, and 

the continuity of the normal component of EεD ⋅=  is enforced. Similar BCs have been 

used in plasma processing (for example, see Refs. 13 and 14). The effect of this BC 

results in a certain amount of screening of the E|| component from the high-dielectric 

plasma region, so that the rf field structure is modified by the presence of the sheaths. 

The sheath BC can be applied for an assumed sheath width ∆, but a self-consistent 

solution requires nonlinear rootfinding or iteration to ensure that ∆ satisfies the Child-

Langmuir Law at all points on the boundary. This is a difficult computational problem for 

a 3D antenna or wave propagation code. 

 The goal of the present paper is to illustrate the effect of the sheath BC on 

electromagnetic wave (coupled FW-SW) propagation in a plasma channel with metal 

boundaries. We view this plasma-filled waveguide approach as a simplified description 

(without unnecessary geometric complications) of the wave propagation in the front of an 

ICRF antenna and will refer to it generically as an “antenna model”. The calculation 

illustrates analytically many of the key features that were explored numerically in 

previous studies of antenna sheaths. The most important application of this model is to 

evaluate the corrections to the vacuum rf field approximation in evaluating antenna 

sheath voltages.  

 The plan of this paper is as follows. In Sec. II, the model is described, the wave 

propagation equations are solved using a perturbation expansion in the small poloidal 
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magnetic field, 1B/Bb yy <<≡ , and a low-density (“tenuous plasma”) approximation 

described subsequently. The sheath BC is applied to obtain a solution of the bounded 

problem for fixed sheath width ∆. It is shown that the magnetic field tilt by and the sheath 

BC couples the propagating FW to a driven SW.  In Sec. III, the physical consequences 

of the parasitic SW are examined. First, the sheath voltage Vsh and the voltage split 

between the plasma and sheath regions are calculated and plasma screening of E|| is 

demonstrated. Second, the Child-Langmuir constraint is applied and the self-consistent 

wave and sheath parameters (E||, ∆,Vsh) are calculated. In Sec. IV the model is applied to 

compute the phasing dependence of the antenna sheath potential and to obtain plasma 

corrections to the vacuum rf field model.  A summary of the work and conclusions are 

given in Sec. V. 

I. RF field solution     

 Consider the problem of electromagnetic wave (coupled FW and SW) 

propagation down a waveguide filled by a constant-density plasma which is tenuous 

enough that we can set 1and0x =ε=ε ⊥ but keep 1|| || >>ε .  The FW is assumed to be 

polarized in the y direction; it is launched at x = 0 and propagates in the +x direction. The 

equilibrium magnetic field is given by )êbê(B yyz +=B  with 1B/Bb yy <<≡ , and the 

magnetic field lines intersect conducting walls at Lz ±= . To simplify the expressions 

even further, we set ky = 0. Thus, the field line tilt is assumed to be small, and we solve 

the wave propagation problem using a perturbation expansion in the small parameter yb . 

In making the correspondence with an antenna in a tokamak, (x, y, z) correspond to the 

radial, poloidal, and toroidal directions, respectively. 

 This model problem is meant to approximate the fields near the front face of a FW 

antenna where the density is low, the FW field is polarized in the direction of the 

(poloidal) current straps, and the equilibrium magnetic field typically has a small 

component in the direction of the current straps. The situation where the magnetic field is 
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perfectly aligned with respect to the antenna ( 0a =⋅JB ) almost never occurs in practice, 

but the misalignment is often small, justifying the perturbation expansion used here. The 

boundaries at Lz ±= represent the antenna frame or antenna protection limiters that 

enclose a typical FW antenna.  

A. Basic equations 

 The wave equation is a)/i4(L JE ωπ−= , where the wave propagation operator is 

 ( ) EεInnEεEnnEεEL ⋅+−=⋅+××=⋅+×∇×∇
ω

−= )n()(c 2
2

2
  . (1) 

Here, E is the rf electric field, Ja is the antenna current density, ω= /ckn  is the the 

index of refraction, k is the wavenumber, ω  is the rf frequency, I is the unit tensor and  

))(2/i()( || bIIbbbIε ×+×ε+ε−ε+ε= ×⊥⊥  is the plasma dielectric tensor. A treatment 

of the wave propagation problem using the full plasma dielectric tensor ε will be given in 

a later paper. In the present paper, we illustrate the physics in its simplest form by making 

use of the “tenuous plasma approximation” for the plasma dielectric tensor ε, viz.  

( ) ( ) 2

2
pe

||2
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2
i

2
pi

x2
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2
pi 1,0,11

ω

ω
−=ε→

Ω−ωΩ
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=ε→

Ω−ω

ω
−=ε⊥  . (2) 

so that bbIε )1( || −ε+= . This approximation is valid when iΩ>ω  and 
2
pe

22
pi ω<<ω<<ω . Expanding in powers of by, the plasma dielectric tensor to first order 

has the form 10 εεε += , where zz||0 )1( eeIε −ε+=  and ))(1( yzzy||1 beebε +−ε= .  

 For a homogeneous plasma the undriven problem, 0L =E , yields the following 

dispersion relations for the FW (subscript f) and SW (subscript s) in the tenuous plasma 

model: 

 1n2
f =      (3) 

   0)1n(n 2
zs||

2
xs =−ε+  (4) 
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where 2
zf

2
xf

2
f nnn +≡ . To complete the specification of the problem, the following BCs9 

are imposed at the sheath-plasma interface at z = +L  (for solutions with definite parity 

the BC at z = −L is redundant.): 

 
x

E
E z

||x ∂
∂

ε∆−= ,      0
y

EE z
||y →

∂
∂ε∆−=  (5) 

where ky = 0 was used in the last step. This BC is equivalent to enforcing continuity of 

the normal component of D (here, z||zzzz EED ε≈ε≡ ) across the sheath-plasma 

interface. The term on the rhs of the BC describes the effect on the rf fields of the sheath 

capacitance, where ∆  is the sheath width in z.  In the limit 0→∆ , we recover the usual 

“metal wall” BC, viz. that the tangential component of E vanishes. Here, “normal” and 

“tangential” are defined with respect to the sheath / wall.  

B. FW solution 

 In lowest order, the wave equation is 

 ya00 J)/i4(L eE ωπ−=  , (6) 

where Ja is the FW antenna current at x = 0. Instead of specifying the current, we can set 

Ja = 0 and equivalently specify the fast wave amplitude E0y at x = 0.  The lowest order 

equation becomes 
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⎜⎜
⎜
⎜

⎝

⎛
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−
=E    . (7) 

and the y component equation gives the following solution for the FW polarization 

 xxfik
zfyf0 e}0),zk(cosÊ,0{ δ−== EE ,  (8) 

where yÊ  is the maximum amplitude of the FW, and we use the vector notation 

}E,E,E{ zyx=E . Two definite-parity cases are considered for the phase δ  in Eq. (8):  
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0=δ , which models monopole phasing of a two-strap antenna (Ey has even parity in z); 

and 2/π=δ , corresponding to dipole phasing (Ey has odd parity in z). Here, kzf is 

determined by the BC on Ey at the sheath, and kxf is given by the FW dispersion relation, 

Eq. (3). Applying the Ey BC in Eq. (5) to the FW, we obtain the constraint )Lk(cos zf δ−  

= 0,  requiring that δ+π=≡η 2/Lkzfzf . For future use, we also define a normalized 

vacuum wavenumber, c/L0 ω≡η , which satisfies the identity 

 απ≡η=η )2/(n zfzf0       (9) 

where )/2(1 πδ+=α to satisfy the FW BC.  

 To first order in by, the wave equation becomes 0110L EE ε−= , or explicitly 
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  (10) 

In general, we have h1p11 EEE += , where the subscripts p and h denote the “particular” 

and “homogeneous” solutions of Eq. (10).  We see that E1p is driven by the FW rf 

electric field when Ey  has a component along B ( 0by ≠ ). In general, h1E  is also needed 

to satisfy the full BC. 

  In carrying out the waveguide solution (having finite extent in z, not a plane 

wave), the index of refraction n is treated as an operator, ∇ω−→ )/c(in ). The x-

component of Eq. (10) requires that the solution have the SW polarization. The z-

component of Eq. (10) is driven by the FW and therefore requires that the solution have 

zfzxfx kkandkk == . To satisfy these conditions, we employ the ansatz 
xxfik

zfz1 e)zkcos(CE δ−= . Combining these equations and using the FW dispersion 
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relation, Eq. (3), to simplify the resulting expression for C, we obtain the particular 

solution 

 xxfik
zfzffp1 e)}zkcos(,0),zksin(iG{C δ−δ−=E     ,  (11) 

where yyÊbC −=  and )1n/(nnG 2
zjzjxjj −≡  for j = f or s. The quantities ω= /ckn xjxj  

and ω= /ckn zjzj  in Gj are defined to be scalars (not operators). Note that 

yyf Êb=⋅ Eb , so that C is proportional to the part of ||E  driven directly by the FW and 

thus provides the electron acceleration necessary for sheath formation. 

C. SW solution 

 It is easy to show that the superposition p10 EE + does not satisfy the sheath BC 

for Ex in Eq. (5).  To satisfy this BC, the FW must couple to another wave which has the 

SW polarization (with 0Ex ≠ ) and satisfies the SW dispersion relation 

( zszxsx kk,kk == ). The desired SW is given by the x- and z-components of the 

homogeneous equations, Eq. (7);  thus, it has the same polarization as the solution in Eq. 

(11) but with a different amplitude and SW wavenumbers: 

 
xxsik

zszsssh1 e)}zkcos(,0),zksin(iG{A δ−δ−== EE  .  (12) 

The coefficient A is determined by applying the x–component of the sheath BC in Eq. (5) 

at the sheath-plasma interface (z = L): 

 0)eDAeDC(i
x

EE
xxsik

s
xxfik

f
Lz

z
||x =+=⎟

⎠
⎞

⎜
⎝
⎛

∂
∂ε∆+

=
   . (13) 

Here, we define )(DD zjj η=  and Lkzjzj ≡η  with j = f, s. The function )(D η  is a global 

dispersion function for the coupled sheath-plasma system given by 

 )cos(k)sin(G)(D zj||xjzjjzj δ−ηε∆+δ−η≡η     . (14) 
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This function involves the homogeneous FW and SW dispersion relations (through kx 

and kz), the plasma density (through ε||),  the system length L (in η), the sheath width ∆, 

and the wave phase. The first term in D represents the usual metal wall BC (Etan = 0) 

whereas the second term contains the sheath capacitance effect.   

 We see that the solution of Eq. (13) requires two conditions. First, we must 

require  

 xxfxs kkk ≡=      (15) 

to obtain a solution that is valid for all x.  Then we can solve for the value of the SW 

amplitude A that solves the BC, viz. 

 
s

f
yy

s

f
D
GÊb

D
DCA =−=   . (16) 

 In the last step, we used the result for C obtained in Eq. (11) and the relation  

2/zf π=δ−η , obtained from applying the BC on Ey to the FW.  Using the latter result, 

we find that the second term in Df  vanishes and ff GD =  for any value of δ.  

 To summarize, the sum of the three waves h1p10 EEE ++  satisfies the full sheath 

BC  when the SW amplitude A satisfies Eq. (16).  In terms of our ordering, y0yEbA ∝  is 

a first order quantity, so the total first order response to the FW is h1p11 EEE += , given 

by  

 

.e)zkcos(
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)zkcos(ÊbE

,0E

,e)zksin(G
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G)zksin(GÊbiE

xxik
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s
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zffyyx1
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⎝
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δ−−δ−−=

  (17) 

Here, the quantity Ds is defined by Eq. (14) and the wave polarization coefficients 

)1n/(nnG 2
zjzjxjj −≡  can be simplified as follows. The FW dispersion relation gives 
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xfzff n/nG −= . To evaluate sG , we rewrite the SW dispersion relation (4) in the form 

||
2
x

2
zs /n1n ε−=− , implying that 1n2

zs ≈  when 2
x|| n>>ε . It follows that 

xs||s n/G ε−≈ )nn/( zsxs||ε−≈ . Thus, we have derived the following forms for the 

functions jD  and jG  

   
.)cos(k)sin(GD

,n/)nn/(G,n/nGD

zs||xzsss

x||zsxs||sxzfff

δ−ηε∆+δ−η≡

ε−≈ε−=−==
    (18) 

 The physical interpretation of Eq. (17) is as follows. The electric field terms with 

zfz kk =  describe the wave generated by the misalignment of the magnetic field ( 0by ≠ ) 

with respect to the FW polarization. The terms in E1 with zsz kk =  describe the SW 

generated at the sheath-plasma interface in order to satisfy the sheath BC. So the first 

order response to the driving FW comes about from two effects. 

 Note that the SW terms in Eq. (17) are proportional to 1/Ds, implying the 

possibility of a resonance when the two terms in Ds nearly cancel [see Eq. (14)]. We refer 

to this well-known effect15-19 as the “sheath-plasma wave resonance.” The first term in 

Ds (shown above to be proportional to ||ε ) is related to the inductive plasma current into 

the sheath, and the second term (proportional to ∆ ) is related to the capacitive current 

across the sheath. In some cases the system (plasma + sheath) can form a resonant LC 

circuit, leading to large electric fields and sheath potentials. Examples include plasma 

processing applications18 and “far field” sheaths in tokamaks.19  In the present problem, 

we do not expect the sheath plasma resonance to be accessible because kx (in the second 

term of Ds) does not satisfy the usual SW ordering; it is constrained to equal the much 

smaller FW value. It will be shown subsequently that in the present problem the 

denominator can be written in a positive definite form for most cases of interest. 
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II. Slow wave effects 

A. Sheath voltage 

 An important application of this model is to calculate the sheath voltage Vsh 

taking into account the self-consistent response of the rf fields to the presence of the 

sheath capacitance. 

  The ac sheath voltage Vsh across one sheath (e.g. at z = L) is given by 

 ( ) )L(E)L(E)L(EEdzV z||y0
)1(

zyz1
)0(

zz
sh

)sh(
zsh ε∆−=ε+ε∆−=−≡ ∫   , (19) 

where the superscripts on ε  denote the order of the dielectric tensor element in powers of 

by. In the second equality, the continuity of the component of D normal to the sheath 

( .constêD zn =⋅−= D ) is used to relate )sh(
zE to zE on the plasma side of the sheath-

plasma interface, treating the sheath as a vacuum layer ( 1sh =ε ). In the last relation, we 

use the constraint in Eq. (5) that 0)L(E y0 =  to satisfy the FW BC. The phase of this 

oscillating rf sheath voltage is arbitrary, so the overall sign was chosen for convenience in 

defining the following dimensionless voltage: 

 )cos(
D
D

L2LÊb
eV

2
V̂ zs

s

f||

yy

xik
sh

x

δ−η
ε∆π=π−≡

−
 (20) 

derived from Eqs. (17) and (19). Using the definitions in Eq. (18) and after doing a short 

calculation, this result can be put in the simple form 

 
)sin()cos()1n)(L/(

)cos(n)L/(
V̂

000
2
zf

00
2
zf

δ−ηα+δ−ηηα−∆

δ−ηη∆
=      . (21) 

This calculation also required the following identities: 1nzs ≈  (SW dispersion relation 

with 2
x|| n>>ε ), 0zs0zs n η≈η=η  where c/L0 ω≡η , and 2/n zfzf0 απ=η≡η  [see Eq. 

(9)].  Here, 1)/2(1 =πδ+≡α  for monopole and 2=α  for dipole.  
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 Note that V̂ is symmetric with respect to η in monopole phasing ( 0=δ ) but anti-

symmetric in dipole phasing ( 2/π=δ ). Thus, the model possesses the correct symmetry 

to give magnetic flux addition / cancellation7 when the effect of the sheath voltages at 

Lz ±= are combined to calculate the time-averaged (rectified) sheath potential (this 

combination is valid when the sheaths are correlated, e.g. in the mobile electron limit,  

1L/v|| >ω ).   

 The ratio V̂ can be given a physical interpretation in terms of the sheath voltage 

Vvac in the “vacuum field sheath model.” The latter voltage is computed by integrating 

the rf E|| component along the field line between sheaths,3-7 ∫−= )vac(
||vac EdzV .  In the 

present model, for monopole phasing ( 0=δ ), the vacuum approximation to the voltage 

across one sheath is 

 xik
0yy

xik
zfyy

L

0
vac

xx eLEb2ezkcosÊbdz)0(V
π

−=−==δ ∫    . (22) 

This quantity takes into account only the lowest order FW field, neglecting the plasma 

response to the BC.  The first equality in Eq. (20) can be rewritten as 

  )0(V/)(V)(V̂ vacsh δ≡δ    , (23) 

showing that )(V̂ δ  is the ratio of the sheath voltage for phase δ, including the 

contributions of both FW and SW fields, normalized to the vacuum sheath voltage in 

monopole phasing. 

 The model can be characterized by two dimensionless parameters, e.g. nzf and 

∆/L.  We are primarily interested in the range corresponding to “short” antennas: 

 ∞<≤ zfn1   ⇔  02/ 0 >η≥π   (24) 

where the FW is radially evanescent in a tenuous plasma. In this range the denominator 

of V̂ does not vanish (Ds ≠ 0) and there is no sheath-plasma resonance.   
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 Now, consider some limiting cases of Eq. (21).  For monopole phasing, in the 

limit 1n zf >>  (which implies 10 <<η ),  we find  

 ℜ≡
∆+

∆= 2
zf

2
zf

n)L/(1
n)L/()0(V̂    . (25) 

Taking sub-limits of ℜ ,  this expression reduces to 

1)0(V̂ =   ,                            for  1n)L/( 2
zf >>∆     ,  (26) 

1n)L/()0(V̂ 2
zf <<∆=  ,      for  1n)L/( 2

zf <<∆    .  (27) 

This is one of our main results and shows that the “vacuum field sheath model” gives the 

correct result in the limit of large 2
zfn)L/(∆  but overestimates the sheath voltage in the 

opposite limit. 

 Another interesting case is 1~nzf  (and hence η0 ~ 1) but ∆/L << 1.  For any 

phasing,  Eq. (21) reduces to 

 1/)cot(n)L/(V̂ 00
2
zf <<αδ−ηη∆=    (28) 

B. Plasma E||     

 Another interesting consequence of the sheath BC is illustrated in this section, viz. 

the screening of ||E  in the plasma and its concentration in the rf sheaths. The rf electric 

field component in the plasma, which is parallel to the equilibrium field  B, is specified to 

first order in by as 

 [ ] xik
zfyyzszf

yyz||

xe)zkcos(Êb)zkcos(A)zkcos(C

EbEE

δ−+δ−+δ−=

+=
   (29) 

where yyÊbC −=  and A is given by Eq. (16).  Substituting in for C and A, the first and 

third terms cancel leaving 
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 xik
zs

s

f
yy||

xe)zkcos(
D
DÊbE δ−=   , (30) 

showing that only the true SW (having both SW polarization and satisfying the SW 

dispersion relation) contributes to the ||E .  Using the same manipulations as in Sec. II A, 

it is straightforward to show that ||E in the plasma region is given by 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

δ−ηη−∆+δ−η
δ−η

εα
−=

)cos()1n)(L/()sin(
)zkcos(n

L
)0(VE

00
2
zf0

zs0
2
zf

||

vac
||    , (31) 

where )0(Vvac  is the vacuum voltage defined in Eq. (22). The cancellation just 

mentioned and the appearance here of 1/ε|| is the plasma screening effect. 

 The plasma screening effect can be represented by a sheath capacitance parameter 

Λ defined by 9   

 
Lsh

|| ∆
ε
ε

−≡Λ     , (32) 

where 1sh =ε  is the scalar dielectric of the (vacuum) sheath region. The parameter 

Λ characterizes the ratio of the capacitive sheath impedance to the inductive plasma 

impedance; when 1=Λ  the two impedances are equal. 

 Using this definition,  E|| in Eq. (31) can be rewritten as 

 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

δ−ηη−∆+δ−η

δ−η∆
αΛ

=
)cos()1n)(L/()sin(

)zkcos(n)L/(
L

)0(V
E

00
2
zf0

zs0
2
zfvac

||    . (33) 

To illustrate the effect of screening, we consider the case of monopole phasing ( 0=δ  

and 1=α ). Again taking the sub-limit 1nzf >>  (implying that 10 <<η ), Eq. (33) reduces 

to 

 zkcos
L

)0(V)0(E zs
vac

|| Λ
ℜ=    ,         2

zf

2
zf

n)L/(1
n)L/(

∆+
∆=ℜ    . (34) 
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Note that  2
zfn/L1for1 <<∆<<→ℜ   and ∆<<<<→ℜ /Ln1for0 2

zf . Since ℜ  is 

bounded ( 10 ≤ℜ≤ ), the main result here is that the parallel component of the SW is 

completely screened from the plasma in the strong sheath limit, i.e. ∞→Λ→ as0E|| .   

 Another way to describe the screening of ||E  is to compute the ratio of the voltage 

drops across the plasma and sheath regions. The voltage drop across the plasma is 

 ||

L

Lz
||

plasma
pl EdzEdsV ∫∫

−=

−≈≡  , (35) 

where we use the whole interval (−L < z < L) to allow for cancellation in the dipole 

phasing case. Using Eq. (33),  we find that the voltage drop across the plasma is given by 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

δ−ηη−∆+δ−η
δ+η+δ−η

Λα
∆−=

)cos()1n)(L/()sin(
)sin()sin(

2
n)L/(

)0(V
V

00
2
zf0

00
2
zf

vac

pl  (36) 

The voltage drop Vsh across the sheath is given by Eqs. (21) and (23), and in monopole 

phasing we multiply Vsh by a factor of 2 to include the additive voltages from the sheaths 

at both ends. It does not make sense to calculate the voltage split for dipole phasing 

because both Vsh and Vpl vanish by symmetry.  

 Thus, in the remainder of this section we restrict the discussion to monopole 

phasing ( 0=δ ). For this phasing, it can be shown that the ratio of plasma to sheath 

voltage (“voltage split”) is given by  

 
Λ

→
ηΛ
η= 1tan

V
V

s0

0

Msh

pl   . (37) 

where the form after the arrow is obtained in the limit 00 →η . (Recall that 1nzf >>  

implies 10 <<η  so the arrow denotes the high-k|| limit.)  Using Ohm’s Law with constant 

current in the sheath-plasma circuit, the monopole result for the voltage split is consistent 
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with the physical interpretation of Λ as the ratio of sheath impedance to plasma 

impedance.  

 In monopole phasing the effect of the jump in dielectric constant at the sheath-

plasma interface is to concentrate the ||E  field in the sheath and to screen it from the 

plasma, as was seen by direct calculation in the previous section. In the limit ∞→Λ  

(large sheath capacitance) all of the voltage appears across the sheath in monopole 

phasing.  

III. Self-consistent sheath: Child-Langmuir Law 

 In the previous sections, we have obtained solutions for ESW and Vsh as functions 

of ∆. However, sheath theory imposes the following well-known nonlinear constraint, 

called the Child-Langmuir (CL) Law20,21 

 
4/3

e

0
D T

eV
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ=∆   , (38) 

where  2/12
eD )ne4/T( π=λ  is the Debye length, shshe0 VCT3V +=  is the “rectified” 

(dc) sheath potential including the Bohm contribution eBohm T3V ≈ , and Csh is an order 

unity rectification coefficient.6 For the present discussion, we assume she VT3 <<  

(generally true for antenna sheaths) and take sh0 V~V . The CL condition must be 

satisfied to have a self-consistent solution for the sheath width ∆  and voltage Vsh. In this 

section, we discuss the procedure for obtaining a self-consistent sheath solution. 

 We consider the general case and write Eq. (21) in the form 

 
C)L/(B

)L/(A
V
VV̂

vac

sh
+∆

∆=≡  (39) 

where the phase information for )0(Vvac has been dropped and it is understood that Vvac 

is always evaluated in monopole phasing in this paper. The coefficients in Eq. (39) are 

defined as 
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 )cos(nA 00
2
zf δ−ηη=  (40) 

 )cos()1n(B 00
2
zf δ−ηηα−=  (41) 

 )sin(C 0 δ−ηα=  (42) 

Solving for ∆/L in Eq. (39), we obtain 

 
V̂BA

V̂C
L −

=∆   , (43) 

and equating the resulting expression to ∆/L obtained from the Child-Langmuir Law, Eq. 

(38), one obtains a self-consistency constraint of the form 

 
4/3

e

vacD
4/1

T
eV

LV̂BA
V̂C

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ λ=

−
  . (44) 

This nonlinear equation gives the self-consistent sheath voltage V̂  as a function of the 

phasing, the spectrum, and the vacuum-field sheath drive Vvac (which is a function of the 

rf antenna voltage or rf power).  Recall from Eq. (26) that 1V̂ ≤  and the maximum value 

is obtained in the limit ∞→∆ 2
zfn)L/( . 

 In Fig. 1,  the self-consistent value of vacsh V/VV̂ ≡  is plotted as a function of 

evac T/eV  for monopole phasing ( 1,0 =α=δ ) with the parameters ne = 1010 cm−3, Te  

50 =  eV, and nzf  = 10.  For these parameters, the factor 2
zfn)L/(∆  varies from 0 to 60 as 

evac T/eV  varies from 0 to 100.  Note the nonlinear increase in V̂  for 1T/eV evac >>  

(characteristic of Child-Langmuir Law scaling)9 and that 1V/VV̂ vacsh <=  for the 

range of parameters shown.  For this case, the vacuum sheath model overestimates the 

self-consistent sheath voltage by less than a factor of two when evac T/eV  > 40. 
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IV. Summary and Conclusions 

 In this paper, we describe an analytic calculation of rf sheath voltages generated 

by electromagnetic waves propagating down a waveguide filled by a constant-density, 

tenuous plasma (i.e. 1and0x =ε=ε ⊥ but 1|| >>ε ). The “waveguide” is meant as a 

simplified model of wave launching by an ICRF antenna, e.g. in the region in front of the 

Faraday screen and surrounded by the antenna protection limiters. In this region the fast 

wave propagates through a low density plasma, and the parasitically generated slow wave 

creates sheaths on the surrounding surfaces.  

 We assume that the fast wave is polarized in the y direction, propagates in the x 

direction, and satisfies boundary conditions at conducting walls located at Lz ±= . The 

magnetic field lines are oriented primarily in the z direction, but a small component of B 

in the direction of the FW electric field is assumed, i.e. 1B/Bb yy <<≡ . The wave 

propagation equations are solved by an expansion in the small parameter by with ky = 0.  

One of the novel and important aspects of the calculation is the use of an rf sheath BC8,9 

at the plasma-sheath interface. We have shown that the magnetic field tilt )0b( y ≠  

couples the FW to the SW, and this coupling is modified by the sheath capacitance 

(through the sheath BC) when 0≠∆ .  In the self-consistent picture, the SW generates 

sheaths by accelerating electrons along B, and the presence of the capacitive sheath 

adjacent to a plasma with large ε|| modifies the SW fields, screening them from the 

plasma and enhancing them in the sheath region. It was demonstrated how to obtain a 

self-consistent solution for the rf fields at the sheath, the sheath width, and the sheath 

voltage by imposing the Child-Langmuir constraint.  

 The main quantitative results of this paper are the expressions for the SW rf 

electric field in Eq. (17) , the rf sheath voltage in Eq. (21) and its monopole nz >> 1 limit 

in Eq. (25), the plasma E|| in Eq. (33), and the nonlinear equation (44) derived using the 

Child-Langmuir constraint. This calculation illustrates some of the conceptual points 
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concerning rf wave propagation and sheath generation in the vicinity of a FW antenna, 

which were first studied with the vacuum-field sheath model.7,10 These include the role 

of magnetic field line tilt discussed above, and the phasing dependence of the sheath 

voltage for two-strap antennas (much larger in monopole than in dipole phasing because 

of the symmetry of the FW field). However, the main usefulness of the present 

calculation is to illustrate the modification of the sheath effects in the presence of plasma. 

For example, it was shown that the sheath voltage in the presence of plasma ( 1|| >>ε ) is 

smaller than the vacuum field sheath voltage estimate ∫= ||EdsV  for finite 2
zfn)L/(∆  

[see Eq. (21) and Fig. 1]. Our calculation also demonstrates how the rf field distribution 

is modified by the presence of the sheath: the rf field E|| is screened in the plasma region 

( ||/1 ε∝ ) and increased in the sheath region; the corresponding ratio of voltages across the 

plasma (Vpl) and sheath (Vsh) scales as Λ= /1V/V shpl , where )L/(|| ∆ε−≡Λ  measures 

the ratio of sheath capacitance to plasma inductance. The importance of the parameter 

Λ was also noted in the electrostatic SW model of  Ref. 9. 

 The model for the rf sheath driving voltage Vsh described here can be used to 

calculate the rectified sheath potential shshe0 VCT3V +=  (see Sec. III) and the “sheath 

power dissipation” )eV(cnP 0sish ∝  due to ions accelerated out of the plasma by the 

sheaths (e.g. see Ref. 22 for a detailed discussion of Psh). Here, the order unity 

rectification coefficient has the value Csh = 0.6 for 0-to-peak values of the voltage.6 

 Apart from its pedagogical value, the most important application of this model is 

to guide the implementation of the sheath BC in antenna codes. (For example, this 

implementation is in progress for the TOPICA antenna code.23)  The analytic results 

derived here can be used for validation and verification (V&V) studies of antenna codes. 

Also, Eq. (21) could be used to obtain a better estimate of the rf sheath potential for 

experimental applications: one would compute ∫−= )vac(
||vac EdsV  using one of the 
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existing 3D antenna codes and then apply Eq. (21) to incorporate the effects of plasma 

( 0|| ≠ε ) and of the sheath BC.  

 An interesting question is whether present experiments are in the regime where 

the vacuum sheath model is valid ( 1~V/VV̂ vacsh= ). Figure 1 suggests that the 

vacuum model is a reasonable approximation for sufficiently large voltages. In high 

power ICRF applications, the antennas typically couple several MW of power to the 

plasma and have voltage differences of tens of kV along the current straps. For typical 

field line mappings near the antenna, this can result in kV rf sheaths. For example, a 

previous modeling study of the TFTR Bay-M antenna10 yielded the following scaling24 

of the sheath voltage: 2/1
rfvac )]MW(P[8.23.0)kV(V −= , where the range covers 

different phasings (monopole and dipole) and different types of field line connections 

(screen-screen, screen-limiter, etc.) Thus, typical antennas have sheaths which satisfy 

1T/eV evac >> . The requirement for validity of the vacuum field model ( 1~V̂ ) is met 

when 1n)L/( 2
zf >>∆  is large [see Eq. (21)], which also depends on other parameters as 

well, notably the plasma density in the antenna region (determining ε|| and ∆) and the 

antenna dimension L. Using ω= /ckn zfzf  and 2/Lkzf π=  (from the FW BC), and 

assuming monopole phasing, one sees that 32
zf L/1n)L/(V̂ ∝∆∝ ;  thus, V̂  decreases 

with L, the length of the field line connection between sheaths in the toroidal direction. In 

fact, numerical calculations of the self-consistent sheath voltage for typical parameters 

show that the decrease of V̂ with L is quite rapid. This effect is outside the scope of the 

vacuum field sheath model, but is addressed by the present calculation. 

 The present work uses the tenuous plasma approximation, valid when 

1/ 22
pi <<ωω ,  which is appropriate near the Faraday screen where the density is low. In 

a future paper, we will discuss the additional plasma corrections when 1/ 22
pi ≥ωω   

required in the high density region farther into the plasma. 
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Figure Captions     
 

Fig. 1 Plot of the self-consistent (Child-Langmuir) sheath voltage, vacsh V/V , vs the 

“vacuum field” sheath drive, evac T/eV , obtained from the solution of Eq. (39).  

This plot assumes monopole phasing with the parameters ne = 1010 cm−3, Te  =  

50 eV, and nzf  = 10. 
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Fig. 1 Plot of the self-consistent (Child-Langmuir) sheath voltage, vacsh V/V , vs the 

“vacuum field” sheath drive, evac T/eV , obtained from the solution of Eq. (39).  
This plot assumes monopole phasing with the parameters ne = 1010 cm−3, Te = 50  
eV, and nzf  = 10. 
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