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Analytic model of near-field radio-frequency sheaths:  
 II.  Full plasma dielectric 

D. A. D’Ippolito† and J. R. Myra 
 

Lodestar  Research Corporation, 2400 Central Avenue, Boulder, Colorado 80301 
 

Abstract 

 An analytic model is derived for electromagnetic radio-frequency (rf) wave 

propagation in a plasma-filled waveguide with rf sheath boundary conditions. The model 

gives a simplified description of the rf fields and sheath potentials near an ion cyclotron 

range of frequencies (ICRF) antenna under certain conditions. The present work lifts the 

restriction to a low density plasma (“tenuous plasma model”) described in a previous 

paper [D.A. D’Ippolito and J.R. Myra, Phys. Plasmas 16, 022506 (2009)]  to include the 

full plasma dielectric tensor with the ordering 1,1~~ || >>εεε ×⊥  for the case where the 

magnetic field is well aligned with the antenna.  It is shown that retaining 1~×ε  provides 

an additional drive term for the rf sheath.  This effect is shown to be negligible in most 

practical situations. suggesting that the tenuous plasma model does not miss any essential 

finite-density effects. The condition to recover the tenuous plasma result is derived. 

Expressions for the sheath voltage and sheath power dissipation are given in the arbitrary 

density limit, and a comparison of several mechanisms for dissipating power in rf sheaths 

is discussed. 

        

PACS numbers: 52.35.Mw, 52.40.Kh, 52.50.Qt, 52.55.Fa   
 
†email: dippolito@lodestar.com 
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I. Introduction 

 Radiofrequency (rf) waves in the ion cyclotron range of frequencies (ICRF) have 

been used successfully to heat and drive current in many fusion experiments and are one 

of the planned heating mechanisms in ITER.1 An important issue for optimizing ICRF 

heating is controlling the strongly nonlinear interactions associated with the unwanted, 

but parasitically-coupled, slow wave. A review of the early history of observed antenna-

plasma interactions in experiments is given in Ref. 2 and a review of important nonlinear 

mechanisms is given in Ref. 3.  One of the most important interactions to be minimized 

during ICRF heating is the formation of rf sheaths.4-8 The basic physics of rf sheath 

formation, and the importance of its control for successful rf heating and current drive, 

was described in Ref. 3.    

 The present paper is the second in a series of papers developing an analytic model 

of rf sheath formation on ICRF antennas. The first paper9 (hereafter referred to as I) used 

the low-density or “tenuous plasma” limit ( 1||,1,0 ||x >>ε=ε=ε ⊥ ) to calculate antenna 

sheaths driven by magnetic field tilt; the present paper uses the full plasma dielectric 

tensor ε  with the ordering 1,1~~ || >>εεε ×⊥  to calculate the dominant finite-density 

effects on the sheaths (see Sec. II). This model allows us to calculate analytically some 

important properties of the coupling of the fast wave (FW) to the slow wave (SW) and 

the resulting antenna sheaths (e.g. the model describes the phasing, voltage and density 

dependence of the sheath potential). The results described here are useful for 

understanding the physics of near-field sheath formation and for illustrating the use of a 

sheath boundary condition10,11 (SBC) proposed earlier. Work is in progress to 

incorporate this boundary condition (BC) into the TOPICA antenna code,12 and the 

present model may also prove useful for future benchmarking of this code. 

 Although rf sheaths have been modeled4-8,13-17 and their consequences studied 

experimentally6,18-24 for over twenty years, the computational tools to make quantitative 
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predictions of rf sheath effects are not yet available. We have suggested a technique for 

carrying out quantitative calculations of the rf sheath potential in rf codes by means of a 

generalized boundary condition on material surfaces, which incorporates the sheath 

capacitance.10,11 The present series of papers demonstrates the utility of this approach for 

calculations of antenna or near-field sheath potentials.  

 This work is part of a group of recent analytic and numerical calculations9,11,25-27 

carried out by the authors to illustrate the effects of the sheath BC in various physical 

situations. Taken together, these calculations provide insight into the dependence of 

sheath formation on the physical situation (driving wave, magnetic field geometry with 

respect to the boundary, etc.)  A summary of these calculations is given in Appendix A 

for the interested specialist reader, to better put the present work into a more general 

context. 

 Here, it is sufficient to contrast the present calculation with that of paper I.  

Sheath formation on ICRF antennas that nominally launch fast waves involves two 

mechanisms for generating slow waves: (i) J|| due to field line tilt, and (ii) FW-SW 

coupling by the axial BC.  Both of these effects occur in the near field of the antenna (not 

to be confused with the far-field sheaths treated elsewhere.10,25)  In case (i) the magnetic 

field is not perpendicular to the antenna current straps (i.e. 0B/Bb yy ≠≡ ), and the 

antenna current aJ = Jy has two components: J⊥ ~ Ja and J|| ~ byJa.  Here, (x, y, z) 

denote local coordinates in the radial, poloidal and toroidal directions, respectively, and 

the subscripts || and ⊥ denote the components parallel and perpendicular to the local 

magnetic field line. For an ICRF antenna, the main J⊥ current drives the desired FW, and 

the small J|| current drives a parasitic SW. Both waves have a zk  given by the toroidal 

antenna structure and a xk  that satisfies the appropriate (FW or SW) local dispersion 

relation (see Appendix B). 
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 Most previous work on antenna sheaths has assumed that they are generated by 

mechanism (i), and the vacuum sheath model is used to estimate the sheath potential, i.e. 

∫= )vac(
||sh EdsV , where the integral is taken along the field line between sheaths, and 

)vac(
||E is the vacuum rf electric field parallel to the equilibrium B. The resulting sheath 

potential is usually large (~ several hundred V) for field lines near the front face of high 

power ICRF antennas.8,14,16-18,21 For an antenna immersed in a finite density plasma 

( LHe nn > , where nLH is the lower hybrid resonant density)  the usual SW due to 

mechanism (i) is driven at the antenna surface and is evanescent in front of the antenna 

with a short radial scale length, pex /c~L ω . (However, it is worth noting that under 

some circumstances the evanescent SW can couple to a propagating wave when sheath 

BC effects are taken into account.27) By “usual SW” we mean a wave on the SW branch 

which satisfies the ordering ||
2
xs ~n ε . The sheath BC corrections to the usual SW are not 

discussed in paper I, but similar SW problems have been treated in earlier studies11,26,27 

(see Appendix A).    

 In contrast to this previous work, the calculations described here and in paper I 

are concerned with the new mechanism (ii), i.e. the SW is driven by the propagating FW 

as it interacts with the boundary sheaths. For this to occur requires the modified ordering 

||
2
xf

2
xs n~n ε<<  (see below). The differences between the two papers is discussed further 

in Sec. II.  In both cases, the sheath BC couples the FW to a wave on the SW branch, but 

its wave vector satisfies unusual constraints, viz. )FW(kk xxs =  and zsk  chosen to 

satisfy the sheath BC. This FW-driven SW can have a larger radial extent than the 

conventional one, because it is generated at each radial point by the FW as it propagates 

away from the antenna.  While the SW directly generated by misaligned current straps 

can be mitigated by (field-aligned) Faraday screens, this FW-generated SW is always 

present. 
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 Assessing the relative importance of mechanisms (i) and (ii) for realistic antennas 

is outside the scope of this paper.  For now, we make the following observations: 

(a) When the field line is tilted, both (i) the conventional SW driven by J||  and (ii) the 

FW-driven SW (described in paper I) have amplitudes of the same order, viz. yyÊb , 

where yÊ  is the FW amplitude, when 1)L/(n2
x >>∆ .  

(b) When the field line is not tilted, we will show in the present paper that the rf 

sheath is driven by anisotropy of the plasma dielectric ( 0≠ε× ); the resulting sheath is 

small, even at high density, and has no relation to the results of the vacuum sheath model. 

(c) The SW in case (ii) has the same radial scale as the FW, potentially larger than 

that of the conventional SW driven by magnetic field line tilt and is not mitigated by 

aligning the magnetic field with the Faraday screens. 

 This paper is organized as follows. In Sec. II we discuss the antenna model and 

the justification for the various approximations used to simplify the calculations.  In Sec. 

III we carry out the two-wave coupling calculation for the rf fields and sheath potential 

for the case 0≠ε×  and 0by = . It is shown that retaining 1~×ε  provides an additional 

coupling term to the slow wave. In Sec. V, we evaluate several mechanisms for sheath 

power dissipation, which can be important at high density, and discuss the role of neutrals 

in providing collisional dissipation. A summary and conclusions are given in Sec. VI.  

Appendix A discusses the relation of the present work to a number of other rf sheath 

calculations carried out for different physical situations arising in a tokamak. Appendix B 

contains background material on the FW and SW dispersion relations and the ordering 

used in this paper. 

II. Antenna model    

 In paper I and here, we incorporate the sheath BC into a calculation of 

electromagnetic wave (coupled FW and SW) propagation in a plasma-filled waveguide. 
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The FW with amplitude yÊ  is launched at x = 0 and propagates in the +x direction. The 

same radial dependence ( xki xe~ ) is assumed for all waves, equivalent to an outgoing 

wave BC.  The equilibrium magnetic field is given by )êbê(B yyz +=B  and the 

magnetic field lines intersect conducting walls at Lz ±= , where the wave satisfies the 

sheath BC described in Sec. III.  To simplify the expressions, we set 0ky =  and the field 

line tilt is assumed to be negligibly small, 1B/Bb yy <<≡ , in contrast to paper I (see 

below).  The boundaries at Lz ±=  represent the antenna frame or antenna protection 

limiters that enclose a typical FW antenna.  

 This model problem is meant to approximate the fields near the front face of a 

FW antenna, where the density is low but plasma effects can still be important. The FW 

electric field has a large component in the direction of the (poloidal) current straps. The 

situation where the magnetic field is perfectly aligned with respect to the antenna 

( 0a =⋅JB ) almost never occurs in practice, but the misalignment is often small.  

 The assumption of constant density in the vicinity of the Faraday screen and 

antenna protection limiters is justified when the density gradient length is larger than that 

for the dc sheath potential. For example, in the limit of strong sheath voltages, rf 

convection13 will flatten the density profile (in the radial direction) near the antenna. 

(This effect was demonstrated by reflectometry measurements of the local density profile 

in front of the antenna in Ref. 20.) This assumption also requires that poloidal 

inhomogeneities be weak, which is justified near the equatorial plane. A number of recent 

experimental papers have studied the spatial distribution of the density and sheath 

potential near the antenna and their radial penetration.28,29-31 The constant density model 

provides a good test case for benchmarks and a simple limit in which to study the 

interaction of sheaths with plasma screening and wave propagation effects in the volume. 

 The assumption ky = 0 on an infinite y domain is approximately valid near the 

poloidal midplane (y = 0) of a typical ICRF antenna and restricts the sheath drive to the 
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magnetic flux produced by the current straps (assuming a constant poloidal current 

distribution and field lines that pass in front of both current straps). It excludes treatment 

of a number of important effects, including sheaths in the corners of the antenna box14  It 

also neglects such 3D effects as the magnetic flux of the current feeders and the effects of 

currents flowing in the Faraday screen and antenna box, which can be important in 

experiments.24 All of these effects would require 0ky ≠  and additional BCs in the y 

direction, but it is not possible to solve the problem analytically in such generality. 

 Finally, the assumption of definite parity in z for the launched rf wave is well 

satisfied at the antenna midplane (y = 0) for a typical two-strap ICRF antenna, with E|| 

having even (odd) parity in z corresponding to monopole (dipole) phasing. This type of 

antenna was common twenty years ago when ICRF heating was the main application, but 

has more recently been replaced by antennas with four or more current straps and non-

symmetric phasings in order to have the capability for FW current drive. However, the 

two-strap symmetric case remains a good test problem for establishing the basic physics 

of antenna sheaths and providing test cases for benchmarking antenna codes, which are 

the main goals of the present calculation. A detailed discussion of the phasing 

dependence (monopole vs dipole) was given in I; in the present paper, we restrict the 

discussion of finite density effects to the monopole phasing case.   

 It is important to note that different orderings are used in papers I and II.  In paper 

I, we solved the wave propagation problem in the tenuous plasma limit 

( 1||,1,0 ||x >>ε=ε=ε ⊥ ) using a perturbation expansion in the small parameter yb  and 

assuming a definite parity in z for the launched FW. Thus, finite-plasma effects entered 

only through ||ε  and the field line tilt was the main effect driving the sheath. Here, we 

investigate a different coupling mechanism, assuming no field line tilt ( 0by = ) but 

retaining arbitrary density effects in the ion plasma dielectric response ( 0≠ε× ) using the 

ordering 1,1~~ || >>εεε ×⊥ . This problem couples two waves: a FW and SW of the 
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same parity. As in paper I, the SW must satisfy a special k ordering, and its amplitude is 

chosen so that the sum of the two waves satisfies the sheath BC.  

III. Basic equations 

 In this section, we discuss the formulation of the problem in which a FW and SW 

are coupled by the rf sheath BC in the absence of field line tilt. 

A. Wave physics 

 The wave equation for the rf electric field is  

 a)/i4(L JE ωπ−=  (1) 

with the wave propagation operator defined as 

 ( ) EεInnEεEnnEεEL ⋅+−=⋅+××=⋅+×∇×∇
ω

−= )n()(c 2
2

2
  . (2) 

Here, E is the rf electric field, Ja is the antenna current density, ω= /ckn  is the index of 

refraction, k is the wavenumber, ω  is the rf frequency, I is the unit tensor and  the 

plasma dielectric tensor is given by 

 ))(2/i()( || bIIbbbIε ×+×ε+ε−ε+ε= ×⊥⊥  , (3) 

where for ICRF waves we employ 

 ( ) ( ) 2

2
pe

||2
i

2
i

2
pi

x2
i

2

2
pi 1,,1

ω
ω

−=ε
Ω−ωΩ

ωω
=ε

Ω−ω

ω
−=ε⊥  . (4) 

For a homogeneous plasma, the undriven problem ( 0L =E ) yields a fourth order 

dispersion relation in nx or nz for the coupled fast and slow wave roots. A more extensive 

discussion of the orderings used in this paper, the approximate dispersion relations, and 

their evaluation in the limit of small ||/1 ε  is given in Appendix B.  

 The wave equation becomes 
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 0
E
E
E

n0nn
0ni
nnin

L

zj

yj

xj

2
x||zx

2
zx

2
z

j =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−ε
−εε
ε−−ε

= ⊥×

×⊥

E    , (5) 

where 2
z

2
x

2 nnn +≡  and the index j = f,s  identifies the wave (FW or SW).  In the limit 
2
x|| n>>ε , the third row gives the parallel polarization xjzxzj|| EnnE −=ε , and the 

determinant of the remaining 22×  system of equations gives the reduced dispersion 

relation 

 22
z

2 )n)(n( ×⊥⊥ ε=−ε−ε     . (6) 

The two roots of this equation are the FW and the SW.   

 In the present calculation, these two rf fields are coupled by the sheath BC at each 

radial position, so we require that  

 xxsxf nnn ≡=   . (7) 

Thus, Eq. (6) is a quadratic equation  for 2
zn . A useful identity relating both waves is 

given by 

 2
zf

2
2
f

2
zs

n
nn

−ε
ε=−ε=ε−

⊥

×
⊥⊥     . (8) 

If 0=ε× , Eq. (8) shows that the FW and SW dispersion relations reduce to 0n2
f =−ε⊥  

and 0n2
zs =ε− ⊥ , respectively, as in paper I.  For the general case, Eq. (8) shows that 

specifying zfn  and the plasma dielectric is sufficient to determine zsn . The dispersion 

relation and the derivation of Eq. (8) is discussed further in Appendix B. 

 For the monopole parity, the polarization of both waves can be written in the form 

 tixxik
zj

j

j
zjzjjjj eezksin

F
Q

,zkcos,zkcosiQA ω−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=E   , (9) 

where jA  are the wave amplitudes. We note the following identities for later use  
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 j
||j

j G
F
Q

ε
ε= ×    , (10) 

 zj
2
x

j

||x

L
n

F
k

η∆=
ε∆−

    . (11) 

where )n/(Q 2
zjj −εε= ⊥× , )nn/(F zjx||j ε−= , )n/(nnG 2

zjzjxj ⊥ε−=  and Lkzjzj ≡η , 

where 2L is the length of the system in the toroidal direction.. 

B. Sheath BC 

 To complete the specification of the problem, the sheath BC10,11  

 )( ntt DE ∆∇=  (12) 

is imposed at the sheath-plasma interfaces at Lz ±= : 

 )]L(E[)L(E z||xx −ε∆∇=−   ,    (13) 

 )]L(E[)L(E z||xx ε∆−∇=     , (14) 

 0)L(Ey =−    ,     (15) 

 0)L(Ey =   , (16) 

where ky = 0 was used in the BCs for Ey. This BC is derived using the continuity of the 

normal component of D (here, z||zzzz EED ε≈ε≡ ) and the tangential components of E 

across the sheath-plasma interface. The term on the rhs of the BC describes the effect of 

the sheath capacitance on the rf fields, where ∆  is the sheath width in z. In the limit 

0→∆ , we recover the usual “metal wall” BC, viz. that the tangential component of E 

vanishes. Here, “normal” (subscript n) and “tangential” (subscript t) are defined with 

respect to the sheath and wall.  

 For some solutions, the BCs at Lz ±=  yield identical constraints. Explicit 

calculation shows that this occurs in the two cases 0,0b xy =ε≠  and 0,0b xy ≠ε= . 
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The general case (keeping both effects) does not have definite parity and requires the BCs 

at both ends.  

 Thus, we use the two BCs at z = L. Substituting the field solution from Eq. (9) 

into Eq. (14) yields the following relation between the wave amplitudes 

 ∑
=

=η
s,fj

zjjj 0cosX̂A    (17) 

where Lkzjzj ≡η  is related to the wavenumber zjn  by 0zjzj n η=η  with c/L0 ω≡η .  The 

coefficient jX̂  is defined by 

 ( )zjzjj

zjjxjj

tanp1Q
tanGkQX̂

ηη+=
ηε∆−≡ ×  (18) 

where  

 )L/(np 2
x ∆≡   (19) 

and the identities in Eq. (10) and (11) were used to obtain the form with parameter p. The 

BC in Eq. (16) yields the additional relation 

  0cosA
s,fj

zjj =η∑
=

  . (20) 

These two equations, together with the two relations in Eq. (8), determine the coupled 

FW and SW amplitudes and the normalized wavenumbers zfη  and zsη . The two 

equations relating the wave amplitudes can be combined to give the global dispersion 

relation   

  ( )
( )zfzff

zszss

tanp1Q
tanp1Q1

ηη+
ηη+=  (21) 

where 

 
×

⊥

⊥

×

⊥

×

ε
−ε=

−ε
ε≡

−ε
ε≡

2
s

2
zs

s2
zf

f
n

n
Q,

n
Q    . (22) 



   
 

 12 

implying that 

 
)n)(n(

Q/Q 2
s

2
zf

2
sf

−ε−ε
ε≡

⊥⊥

×    . (23) 

It follows from Eq. (22) that 0Qf →  and ∞→sQ  in the tenuous plasma limit ( 0x →ε ).  

By Eq. (21) this limit requires either 0tanp1 zszs =ηη+  or ∞=ηη+ zfzf tanp1   The 

latter condition implies that 0tan zf →η  and 2/zf π→η  for the lowest branch. (As in 

paper I, we consider here only the lowest mode of the system.)  We see that this 

calculation recovers the same solution for the normalized FW wave number zfη  in the 

tenuous plasma limit as in paper I  but the sheath voltage will be different because the 

orderings are different. 

C. Sheath voltage 

 Next, we derive an expression for the sheath voltage and show that it is caused by 

a new effect. To lowest (zero) order in yb , the component of the rf electric field parallel 

to B is z|| EE ≈ . Summing Eq. (9) over both waves and using Eq. (10), we obtain 

 ( ) tixxik
zssszfff|||| eezksinGAzksinGAE ω−

× +ε−=ε   . (24) 

Note that the rhs is independent of ||ε  so that 0/1E |||| →ε∝  as ∞→ε|| . This is the 

effect of plasma screening in our model. 

 We define the voltage across the plasma as in paper I, and find that 

    0EdzV
L

L
||pl →= ∫

−

  . (25) 

because kzsinE|||| ∝ε . The reason that the voltage drop across the plasma vanishes here 

is that we have eliminated the contribution to ||E  proportional to yb  which gave a non-

zero result for plV  in paper I.  However, there is still a non-vanishing voltage drop across 

the sheaths, driven by a combination of the anisotropy of the plasma dielectric ( 0≠ε× ) 

together with the sheath capacitance ( 0≠∆ ). The sheath voltage at  Lz =  is defined by 
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( ) tixxik

zssszfff

||||sh ||sh

eesinGAsinGA

EEdz)L(V

ω−
× η+ηε∆−=

ε∆−=−= ∫    (26) 

A similar expression is obtained at Lz −= . Since we are using a fluid result for the 

plasma dielectric, the present calculation corresponds to the limit L/vthe>>ω  in which 

the two sheaths are uncorrelated (electrons cannot communicate between sheaths). Thus, 

we are studying the effect of the sheath capacitance on a single sheath in this limit. 

D. Child-Langmuir Law 

 In previous sections, the sheath width ∆  was considered an arbitrary input 

parameter.  However, as discussed in paper I and in Ref. 11, the sheath width must be 

determined self-consistently by requiring that it satisfy the Child-Langmuir (CL) 

Law32,33  in the form 

 
4/3

e

sh
D

4/3

e

0
D T

eV
T

eV λ≈⎟
⎠

⎞
⎜
⎝

⎛λ=∆   , (27) 

where 2/12
eD )ne4/T( π=λ  is the Debye length, shshe0 VCe/T3V +=  is the “rectified” 

(dc) sheath potential including the Bohm contribution eBohm T3eV ≈ , and Csh  is an order 

unity rectification coefficient7  We denote the value of Vsh that satisfies the CL Law by 

VCL. 

 In general, Vsh is a complicated nonlinear function of ∆ . In addition to the 

explicit linear dependence on ∆ , Eq. (26) will have other ∆ -dependent terms in the 

expressions for Af and As. Examples of how to solve for the ∆  and VCL scalings were 

given in paper I and in Refs. 11, 25-27. We will not treat the self-consistent solution of 

VCL = Vsh here because it will be shown presently that the sheath voltages generated by 

Eq. (26) are typically small, or at most of order 3Te, and enhancement by the sheath-

plasma resonance is not expected.    
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IV.  Analytic and numerical solutions 

 We will now apply the formalism of Sec. III to compute an analytic solution for 

the rf fields and sheath potential for FW-driven sheaths. The characteristics of the FW are 

known, so we specify the FW amplitude yf ÊA ≡  and solve for the SW amplitude sA . 

One can obtain an analytic solution by expanding about the tenuous plasma limit 

( 1→ε⊥ , 0x →ε  and 2/zf π→η ).  The following definitions are useful:  

 zf2/ η−π≡δ ,         c/L0 ω≡η   .  (28) 

Expanding in δ , we find that δ≈η /1tan zf , δ≈ηzfcos , 1sin zf ≈η  and 

)2/(/n 00zfzf ηπ≈ηη=  to lowest order in δ . We employ this expression for zfn  in the 

lowest-order dispersion relations for the FW and SW in the tenuous plasma limit, viz. 

 2
0

2
x

2
f )2/(1n1n ηπ−=⇒=   , (29) 

 00zszs
2
zs n1n η≈η≡η⇒=    . (30) 

Using these results in the definition of Qj [see Eq. (22)], it can be shown that 2
xf n/Q ×ε≈  

and ×ε−≈ /nQ 2
xs , so that the small parameter in this expansion is 1n/ 2

x <<ε× .  We treat 

the sheath parameter )L/(np 2
x ∆≡ of order unity.  Expanding  Eq. (21), one obtains  

 ( ) ( )004
x

2

00s

f

tanp1
p

n2tanp1
p)2/(

Q
Q

ηη+
επ−=

ηη+
π≈δ ×   .  (31) 

The SW amplitude is given by Eq. (20), which completes the solution for the rf fields: 

 

( )0004
x

2
y

0
y

zs

zff
s

sinpcos
p

n2
Ê

cos
Ê

cos
cosAA

ηη+η
επ=

η
δ−≈

η
η−=

×
 (32) 



   
 

 15 

 Using these results in Eq. (24) for ||||Eε , we find that both the FW and SW 

contributions are of the same order in the small parameter 2
xn/×ε .  To lowest order in the 

expansion, the coefficients are given by  

 
x0

f n2
G

η
π−≈   (33) 

 2

3
x

2

2
zfzsx

s
n)n1(nn

G
×× ε

=
ε

−
≈    (34) 

Since the amplitudes Aj and the coefficients Gj are known, we can evaluate the voltage 

drop across the sheath in Eq. (26). The result is 

 

x

zf

00

y

00

00

x

zf
ysh

n
n

tanp1
Ê

tanp1
tanp1

n
nÊ)L(V

ηη+
∆ε

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ηη+

ηη−∆ε=

×

×

   (35) 

where )L/(np 2
x ∆≡ ,  )2/(n 0zf ηπ= , 2

0x )2/(1n ηπ−=  and c/L0 ω≡η . Note that a 

cancellation occurs between the FW and the SW terms in the first line of Eq. (35). In the 

limit ∞→p , the sheath potential vanishes. If 1tanp 00 −=ηη , one obtains the sheath-

plasma resonance discussed in Appendix A; however, this is unlikely to be important in 

practice because 1~0η  and p << 1 are typical values for realistic situations. If 

1tanp 00 <<ηη , the SW contribution is small, and the sheath potential in this case is 

driven by the FW alone.  Taking this limit, and assuming that 1~n/n xzf , we obtain the 

following order of magnitude estimate for the sheath potential 

 ysh Ê)L(V ∆ε≈ ×   . (36) 

When esh T3eV >> , the sheath width ∆  is given by the Child-Langmuir Law, as 

discussed in Sec. III D. In what follows, we will use the lower bound estimate, Dλ=∆ , 

because the rf contribution to the sheath potential turns out to be small. 



   
 

 16 

 We can now estimate the typical sheath potential due to the xε  effect. The full set 

of equations [Eqs. (8) and (21)]  without the δ expansion was solved numerically and 

compared with the estimate provided by this analytic solution. The following base case 

was used: deuterium plasma (Z = 1, 2m/m pi =≡µ ) with B = 3 T, Te = 20 eV, L = 50 

cm, ω = 2Ωi, and cm/V250Êy = (FW field ).  (For these parameters, we note that the 

LH resonance occurs at 310
e cm108.6n −×= , the FW cut-off occurs at 

311
e cm101.7n −×= , and the sheath plasma resonance does not occur.) For  

311
e cm10n −< , the estimate in Eq. (36) is good to within 10% but the sheath voltages 

are low, V10Vsh < . Above the FW cut-off, the tenuous plasma result in Eq. (36) gives 

an over-estimate of the sheath voltage. From the numerical solution one finds that Vsh 

increases with density, reaching 40 V at 313
e cm10n −= , but this contribution is much 

smaller than the rf sheath voltage due to magnetic field tilt discussed in paper I. The 

numerical work confirms that the SW contribution to Eq. (35) is small over the density 

range considered ( 313
e

310 cm10ncm10 −− << ). Thus, with the FW providing the 

dominant E|| driving the sheaths, it is not surprising that the resulting sheath voltages are 

small. 

 In summary, in paper I and the present paper, we have studied rf sheaths 

computed including the effect of the sheath BC on the FW launched by an ICRF antenna. 

Here, we have considered additional finite density effects not contained in paper I.  

(Previously, the electron density contribution in ||ε  was retained, but the ion contributions 

to ×⊥ εε and  were neglected.)  Here, we find that the plasma anisotropy effect in 

×ε provides an additional drive for the rf sheath voltage, but it is small compared to the 

effect considered in paper I, viz. the magnetic field tilt yb . 

V. RF sheath power dissipation 

 This paper concerns rf sheath behavior at high density. One effect is the FW 

mechanism proportional to ×ε  for driving rf sheaths potentials, discussed in Secs. III and 
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IV. Another important effect is the dissipation of power (by several mechanisms) in the 

antenna and other surrounding structures34,35 by rf sheaths, which is generally important 

only at significant density. In this section, we apply our antenna model to estimate the 

magnitude of power dissipation in antenna sheaths and to determine the most important 

loss channel. We consider the case of monopole phasing, assume the dominant sheath-

drive mechanism (discussed in paper I) and take the limit 1n)L/( 2
xf >>∆ , in which the 

vacuum and plasma sheath models agreed in paper I. In this limit, E|| is given by 

)/(VE ||sh|| ε∆=  in the plasma and by ∆= /VE sh||  in the sheath.. (The result for E|| in the 

plasma is exact in the tenuous plasma limit and approximate in the high density limit.) 

Unless otherwise noted, we use the following base case for doing numerical estimates: a 

deuterium plasma (Z = 1, 2m/m pi =≡µ ) with B = 3 T, ni = ne = 1011 cm−3, Te = 30 

eV, L = 50 cm, ω = 2Ωi, and Vrf = 600 V.  

 The first sheath power dissipation mechanism is the acceleration of ions in the 

sheaths and the subsequent dissipation of that energy in the material boundary.35 The ion 

power dissipation (Pi) per unit area is given by )eV(cnC)eV(cnA/PS shsish0siii ≈=≡ ⊥   

for eVsh/Te >> 1, where Csh is an order unity rectification coefficient.7 Using ni = ne  and 

introducing the distance 2L between sheaths, we can write this expression as  

)L2(n)eV(CS ||eshshi ν=  with )L2/(cs|| =ν . For the base case parameters, we obtain 

 311
i

2i
cm10
n04.0

cm
kWS −=⎟

⎠
⎞

⎜
⎝
⎛    . (37) 

Thus, the sheath power dissipation due to this process is very small for the low densities 

near the Faraday screen, but a significant heat flux can occur at higher densities, ni ≈1012 

cm−3.  

 We now turn to the electron dissipation mechanisms. The power per unit area for 

the nonlinear electron heating mechanisms can be put in the general form 
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 L2n)v(mS e
2

e2
1

e νδ=     , (38) 

where δv and ν are the characteristic velocity kick and power dissipation rate defined 

below, and 2L is the distance between sheaths. 

 The first example is collisional heating of electrons in the plasma between the 

sheaths, due to collisions with neutrals.36,37 (Neutral collisions can also occur in the 

sheath itself when the electron mean free path is short enough, L2n)v(mS e
2

e2
1

e νδ=  

∆<λe , but this regime is not expected to apply for fusion plasmas.) The typical velocity 

in the bulk plasma is the jitter velocity of the electrons in the rf field, 

)m/(eEvv e||rf ω=→δ , where E|| is the parallel component of the rf electric field in the 

plasma region. Our antenna model gives the typical field )/(VE ||sh|| ε∆= . The dissipation 

rate is given by the electron-neutral collision frequency, een0en vn σ=ν→ν , where ve is 

the electron thermal speed and 215
en cm105 −×=σ , approximately independent of 

species.38 An estimate for the neutral density is given by the recycling condition 

ii00 vnvn = , where v0 and vi are the thermal velocities of neutrals and ions, and a 

recycling coefficient of unity has been assumed. Other mechanisms, like outgassing and 

external gas sources, can give even higher neutral densities near the antenna. For the base 

case parameters, we obtain the following scaling of Sc, the power per unit area dissipated 

by electron-neutral collisions, with the plasma and neutral densities 

 314
0

311
e

2c
cm10

n
cm10

n003.0
cm
kWS −−=⎟

⎠
⎞

⎜
⎝
⎛   . (39) 

 Another mechanism for electron heating is Fermi acceleration,36,37,39,40 where 

the electrons are heated stochastically by bouncing off the oscillating sheaths at both ends 

of the field lines. An order of magnitude estimate of stochastic heating can be obtained by 

using the rate )L2/(ve→ν  and the velocity kick ∆ω→δv , where the sheath width ∆ is 

given by the Child-Langmuir Law. Numerical calculations show that the estimate 

∆ω≈δv  is valid for ev<∆ω .40 Using these estimates, the power dissipation per unit 
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area for Fermi acceleration (stochastic electron heating) is ee
2

e2
1

F vn)(mS ∆ω= , which is 

independent of density. For the base case parameters, we obtain 

 001.0
cm
kWS 2F =⎟

⎠
⎞

⎜
⎝
⎛      . (40) 

 Thus, the stochastic electron power dissipation exceeds that due to collisional 

heating at sufficiently low neutral density (gas pressure).41 For ne = 1011 cm−3, the 

condition cF SS >  requires n0 < 3 × 1013 cm−3. For these parameters, the ion power 

dissipation is the largest contributor to the power losses. The design limit42 for the heat 

load on material surfaces in ITER (assuming normal incidence) is about 1-2 kW / cm2. 

The estimates in Eqs. (37) – (40) show that sheath power dissipation could be a problem 

on parts of the antenna structure that encounter large plasma densities (~ 1012 cm−3).   

 Finally, we point out that neutrals can influence the sheath formation if the ion 

mean free path for neutral collisions, )n/(1/v in0iniin σ=ν=λ , is comparable to the 

sheath width ∆.  This effect has been studied in the plasma processing literature (e.g. see 

Ref. 43) These effects have been neglected in the present work because cm2in >λ  for 

n0 < 1014 cm−3 and the condition ∆>λin  is easily satisfied.  

VI. Summary and Conclusions 

 This paper investigated a new mechanism for rf sheath formation on antennas. 

Combining the work in Ref. 9 (paper I) and the present work (paper II), we have 

formulated two analytic models of the coupling of a FW and SW by the rf sheath BC, 

including the effects of magnetic field line tilt ( yysh ÊbV ∝ ) and of the full plasma 

dielectric tensor ( ysh ÊV ∆ε∝ × ). For typical parameters, the magnetic field misalignment 

is the stronger effect. A calculation retaining both effects simultaneously was also carried 

out, but the additional effects do not add additional insight in the assumed ordering and 

were not discussed here. The present paper shows that the finite- ×ε  sheath drive is due to 
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the FW rather than the SW; therefore, it is weak and the earlier calculation in paper I is 

not missing any essential density-related effects. Both calculations may be useful for 

benchmarking the next generation of antenna and SOL codes that incorporate sheath 

effects self-consistently through the sheath BC. 

 The question of how these models relate to the vacuum-field sheath 

approximation commonly used in present rf codes was discussed in Sec. I.  Present ICRF 

antenna codes evaluate the SW driven by the magnetic field tilt (and other effects outside 

the scope of the analytic models) but do not include the effects treated in papers I and II.  

The SW considered in our models owes its existence to the sheath BC; it has the same 

maximum value and potentially greater radial extent than the SW considered in the codes, 

but in general its amplitude is smaller.  It was shown in paper I that the two slow waves 

yield the same sheath potential in the limit ∞→∆ 2
xn)L/( .   

 From papers I and II we conclude that the sheath boundary condition plays an 

essential role in describing the interactions of antenna near fields with the antenna 

structure, and that minimally the tenuous-plasma dielectric should be retained for the 

plasma model in the vicinity of the antenna.  Retaining both mechanisms (i) and (ii) 

discussed in the introduction, in addition to the effect of antenna corners, protrusions and 

the Faraday screen, are all required for quantitative results and will clearly require 

advanced numerical codes and additional work. 

 We conclude by pointing out that for general geometry the two terms in the sheath 

BC stand in the relation 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∆⋅ 2
t

||
|||| n

L
)Lk(:1 sb      , (41) 

where the first term represents the metal wall BC and the second term gives the sheath 

capacitance contribution. Here, B/Bb = , s is the normal to the sheath, ∆  is the sheath 
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width, and tn  is the tangential part of the index of refraction ω= /ckn . In the present 

work, xxt ên=n because we assumed 0ny =  and ||||Lk  is order unity for the lowest 

mode. Thus, 2
xn)L/(∆  emerges naturally as a parameter representing the effect of the 

sheath capacitance in the BC. (As an aside, we note that nx2 ~ ε|| in the conventional SW 

ordering considered e.g. in Refs.11, 26, and 27, so in this case the natural parameter is 

equivalent to L/||∆ε−≡Λ , the sheath capacitance parameter defined in paper I. 

 Other topics related to the theme of calculating antenna sheath effects were also 

discussed in this series of papers. In paper I, the effect of phasing dependence of the 

current straps on the sheath voltage was examined. Also, it was shown how to compute 

the sheath width self-consistently using the Child-Langmuir Law. In Sec. V of paper II, 

we surveyed mechanisms by which the sheaths can dissipate rf power, and discussed the 

role of neutrals.   

 Finally, in Appendix A of this paper, a short overview is given of a number of 

related sheath calculations using the sheath BC, which help to put the present work in 

context.  It is shown in Appendix A that all of these sheath calculations have a number of 

features in common, and these features have important consequences for understanding 

the interaction of ICRF antennas with the edge plasma.  
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Appendix A  Overview of sheath models   

 In this Appendix, we put the present work into context by giving an overview of a 

series of related calculations illustrating rf sheath physics by means of the sheath BC 

(SBC).9,11,25-27 These calculations differ in the types of waves driving the sheath 

formation and in the assumed magnetic geometry. There are two physical situations 

which must be distinguished: (1) the FW propagates (or evanesces) across a magnetic 

field and a parasitic SW is generated by the mismatch of the equilibrium magnetic field 

orientation with the bounding surface;9,10,26 or (2) the SW propagates (or evanesces) 

across magnetic field lines and directly induces sheath potentials at the material 

boundaries.11,26,27 In all of these cases, another important distinction is whether the 

sheath-plasma resonance36,44-46  plays a role in enhancing the sheath potential. This 

depends on the range of wavenumbers involved in the wave propagation, and on the 

wave polarization.    

 First, we discuss the SW case. In Ref. 11, we studied the propagation of an 

electrostatic SW (electron plasma wave) perpendicular to B and along the axis of a 

waveguide using the SBC at the waveguide walls. This analytic calculation showed how 

the sheaths impose a localization condition (along B) on the mode, and that plasma 

screening of the rf field occurs when 1|| >>ε . Other sheath effects (e.g. the sheath plasma 

wave) become important when the sheath capacitance parameter )L/(|| ∆ε−≡Λ  is order 

unity (∆ is the sheath width and 2L the distance between the waveguide walls). The effect 

of sheath power dissipation due to ion acceleration in the sheaths was also included in the 

formalism of Ref. 11.  It was shown that the plasma-sheath system conserves energy in 

the calculation of the self-consistent Child-Langmuir (CL) potential. Power lost to the 

sheaths reduces the wave amplitude and Poynting flux of the electron plasma wave such 

that energy is conserved. 
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  In Refs. 26 and 27, we studied the behavior of a SW launched by the antenna. 

Below the LH density, the SW propagates in the form of a resonance cone26 (RC)  The 

RC propagates out to the sheaths and must satisfy the SBC there. It was shown in Ref. 26 

that the self-consistent (Child-Langmuir) sheath potential generated at the wall is a 

significant fraction of the RC voltage at the antenna when 1)a/( ||||RC >>∆ε≡Λ , where 

a|| is the dimension of the RC structure along the magnetic field at the antenna. Since the 

RC propagates essentially parallel to B, this calculation provides a mechanism for 

conveying antenna voltage to distant surfaces around the tokamak.22 Above the LH 

density, the SW does not propagate, but for sufficiently close limiters the SBC introduces 

a new mode, the sheath-plasma wave, which can propagate away from the antenna and 

carry the antenna voltage to surrounding surfaces.27 A self-consistent calculation of the 

rf-sheath width yields the resulting sheath voltage in terms of the amplitude of the 

launched slow wave, plasma parameters and connection length. 

 Sheath formation in the FW cases involves secondary (parasitic) coupling of the 

FW to the SW, because the polarization of the propagating FW has 0E|| = .  In Refs. 10 

and 25 we considered the “far field sheath” problem in which rf wave energy encounters 

distant (compared to the FW wavelength) surfaces. The fast waves are assumed to be 

incident on a conducting boundary not aligned with a flux surface (i.e. 0≠⋅bs , where s  

is the normal to the conducting surface).  In this case, the magnetic field orientation is 

such that the FW cannot satisfy the sheath BC without coupling to the SW,10,47 and rf 

sheaths are generated by the resulting SW. Recently, an analytic approach25 to this 

problem was formulated using a wave scattering formalism with the SBC determining the 

coupling coefficients of the reflected waves (FW + SW). As in the SW problems 

described previously, the self-consistent CL sheath potential was calculated and was 

shown to have a large effect on the solutions. This nonlinear constraint introduced 

multiple roots, some of which had large sheath potentials (because of sheath-plasma 
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resonance) even when the FW amplitude at the wall was modest. This problem is relevant 

to fast waves which propagate through the plasma under conditions of low single pass 

absorption or waves with FW polarization that propagate around the SOL and encounter 

material boundaries.  

  In Ref. 9 (paper I) and in the present work (paper II), we consider the “near field 

sheath” problem for a FW ICRF antenna. (In the assumed waveguide geometry, this 

calculation generalizes Ref. 11 to electromagnetic waves and to general parity.)  As in all 

of these calculations, magnetic geometry plays a crucial role.  In paper I it was shown 

that the FW is coupled to the SW by the sheath BC when the magnetic field orientation is 

not properly aligned with the antenna.  In the present paper, we show that high density 

plasmas have a second coupling mechanism: the off-diagonal plasma dielectric tensor 

element ×ε  couples the FW and SW and causes a (typically small) enhancement of the 

sheath, which persists even when the magnetic field is perfectly aligned. These analytic 

calculations exhibit important qualitative features inferred by past antenna sheath studies, 

such as dependence of the sheath potential on the antenna phasing (which determines the 

parity of the rf fields and the degree of cancellation of the magnetic flux driving the 

sheath voltage8). They provide for the first time a way to incorporate the important effect 

of sheath capacitance on the plasma-sheath system. Future work, incorporating this 

physics into models with more realistic geometry, will be required to obtain quantitative 

evaluations of the this effect for real antennas. 

 To summarize, all of these calculations taken together make the following points: 

(1) Sheaths are generated by the magnetic field mismatch with material boundaries and 

by the anisotropy of the plasma dielectric tensor. 

(2) When finite plasma density near the sheath is taken into account, the sheath 

capacitance causes a voltage redistribution along the B field. 
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(3) The condition for strong sheath effects in the FW-driven case (papers I and II) is 

1)L/(n2
x >∆ , or for the conventional SW case, 1)L/(|| >∆ε−≡Λ , where L is some 

characteristic distance along the field lines (problem dependent). 

(4) The sheath boundary condition introduces a new class of modes, called sheath-plasma 

waves, and a new resonance; the resonance can enhance the sheath potential in some 

cases. 

Appendix B  Dispersion relations and SW eigenmode 

 In this Appendix, we review some details of the dispersion relations used in the 

main text. The general dispersion relation for the coupled fast and slow waves is given by  

  0
n0nn

0ni
nnin

det
2
x||zx

2
zx

2
z

0 =
−ε

−εε
ε−−ε

= ⊥×

×⊥

L   , (B1) 

 ( )22
z

2
x

222
z

2
x|| nnn])n)(n)[(n( −ε=ε−−ε−ε−ε⇒ ⊥×⊥⊥   , (B2) 

where 2
z

2
x

2 nnn +=  and ⊥≡≡ nn,nn x||z . For specified nx, Eq. (B2) is a second order 

equation for 2
zn  and there are two roots which lie on the FW and SW branches.   

 The two waves uncouple for large ||ε . The FW ordering is ||
2
z

2
x ~n~n ε<<ε⊥ . 

Taking the limit ∞→ε||  in Eq. (B2), the FW dispersion relation becomes 

 0)n)(n( 22
z

2 =ε−−ε−ε ×⊥⊥   . (B3) 

In the “tenuous plasma” limit considered in paper I (where 1||,1,0 ||x >>ε=ε=ε ⊥ ), the 

FW dispersion relation in Eq. (B3) reduces to  

 ⊥ε=2
fn   . (B4) 

Returning to the arbitrary density case, the usual SW ordering is ||
2
x

2
z ~n~n ε<<ε⊥ . 

Taking the limit ∞→ε||
2
x ~n  in Eq. (B2), we obtain the SW dispersion relation, 
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 ( ) 0nn 2
x

2
z|| =ε+ε−ε ⊥⊥ .  (B5) 

 It is important to point out that the usual SW ordering is not relevant to the 

calculation described in Sec. III. In order for the FW to satisfy the sheath BC at each 

point in x, it must couple to a wave with SW polarization and this wave must have 

xfx nn = . Thus, in the present problem the SW satisfies the same ordering as the FW, i.e. 

||
2
z

2
x ~n~n ε<<ε⊥  and also satisfies the dispersion relation in Eq. (B3). As noted above, 

for a given xn  this is a second order equation for 2
zn  and has both FW and SW roots. 

Writing this equation in the form 0)XX)(XX( sf =−−  with 2
zss

2
zff nX,nX ≡≡ , 

expanding as 0XX)XX(XX sfsf
2 =++− , and comparing coefficients with Eq. (B3) 

one obtains two relationships between the FW and SW roots 

 

 2
zf

2
x

2
zs nn2n −−ε= ⊥   (B6) 

and 

 ( ) .nnn 22
x

2
zs

2
zf ×⊥⊥ ε−−εε=  (B7) 

 In the main text, the dispersion relations for the FW and SW are solved as 

follows.  The wavenumber zfn  is determined by the sheath BC, and Eq. (B3) is solved 

for 2
xfn  with 2

zf
2
z nn = . Finally, Eq. (B3) with xfxs nn =  (required by the sheath BC) is 

solved for 2
zsn  using the constraint  (B6) or (B7). Using Eq. (B3) to solve for 2

zfn−ε⊥  in 

Eq. (B6), one obtains the result that 

 2
zf

2
2
f

2
zs

n
nn

−ε
ε=−ε=ε−

⊥

×
⊥⊥   . (B8) 

This is a very useful form of the dispersion relation. If 0=ε× , it shows that the FW and 

SW dispersion relations reduce to 0n2
f =−ε⊥  and 0n2

zs =ε− ⊥ , respectively, as in paper 

I.  For the general case, Eq. (B8) shows that specifying zfn  and the plasma dielectric is 

sufficient to determine zsn . Finally, we note that the rhs of Eq. (B8) tends to be small, 
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even at high density where 1~×ε , because 1n2
zf >>  for typical parameters. Thus, the 

character of the SW solution is approximately determined by whether the density lies 

below or above the LH resonance ( 0=ε⊥ ). 

 We have seen that the point where 0n2
zs =  is approximately given by 0=ε⊥ , 

although there are small corrections from the ×ε term in Eq. (B3) that are retained in the 

numerical solution. For densities low enough that 0>ε⊥ , zsn  is real and the SW 

eigenmode has a sinusoidal z dependence. It is a global mode, spanning the antenna 

region along z. For higher density, 0<ε⊥ , zn  is imaginary, the SW eigenmode has a 

hyperbolic z dependence, and the SW fields are evanescent in z away from the 

boundaries at Lz ±= . As the density increases and ∞→ inz , the SW fields become 

concentrated near the sheaths. 
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