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Radiofrequency (rf) waves can enhance electron losses to a material surface and 

generate rf sheath potentials which are significantly larger than the thermal Bohm sheath. 

The condition for this to occur is that the rf electric field has a component E|| parallel to 

the equilibrium magnetic field. Thus, a proper treatment of rf wave propagation requires 

an accurate description of the geometry of the magnetic field and of the bounding 

surfaces, and a boundary condition (BC) that includes the effect on the waves of the 

electron-poor sheath. When the static magnetic field has a component at an angle to the 

sheath, the propagating fast wave (with 0E||  ) is coupled to a slow wave (with 0E||  ) 

in order to satisfy the boundary condition at the metal wall, and the time-averaged sheath 

potential has a strong component from rectification of the rf sheath. In this brief 

communication, a previously derived sheath BC is reformulated to treat the coupling of 

the fast wave to the slow wave analytically, thereby greatly reducing the necessary 

numerical resolution required for calculation of fast wave propagation. 
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Previous theoretical and experimental work has shown that radio-frequency (rf) 

enhanced sheaths are an important feature in some regimes of fusion experiments using 

ion cyclotron resonance heating. The sheaths can lead to rf-specific impurity production, 

hot spots, edge power dissipation, and other effects which must be minimized for good 

performance, especially for the next generation of long-pulse tokamak experiments.. 

These issues have been discussed in a number of recent review and overview papers,1-3  

and continue to stimulate experimental work and modeling.4-9  Antenna design activities, 

rf scenario development, and interpretation of experimental data, all require the 

development of rf wave codes which can self-consistently evaluate the effects of rf 

sheaths at the boundary. Previously, we have suggested one approach for developing self-

consistent simulations, viz. the use of an “rf sheath” boundary condition (BC),10,11 which 

treats the electron-poor sheath region as a thin vacuum layer. This vacuum layer 

approximation, employed previously in some codes as a sub-grid model,12 captures the 

large change in the rf parallel electron response across the sheath interface. 

This rf sheath BC is derived10,11 using the continuity of the normal component of 

the displacement EεD   and of the tangential components of the electric field E across 

the plasma-vacuum (sheath) interface.  The BC at this interface is given by 

 )/D( shntt E  , (1) 

where the subscripts n and t denote “normal” and “tangential” to the sheath surface, the 

field components are defined on the plasma side of the interface, and   is the time-

averaged sheath width (sufficient for computing the rectified sheath potential). We will 

refer to this BC as the “full sheath BC” to distinguish it from the reduced BC derived in 

this paper. The right hand side (rhs) contains the effect of the sheath capacitance 

(  /1 ). When the sheath capacitive impedance (  ) is neglected, one recovers the 

usual metal wall BC, 0t E . Here, sh  is the dielectric constant in the sheath region, and 

its vacuum value ( 1sh  ) will be used here, unless otherwise noted.  

 If the sheath width   is regarded as specified, Eq. (1) gives a linear relation 

between the rf fields and the rf sheath potential n
)sh(

nrf D E , where the 
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superscript (sh) indicates a field component on the vacuum side of the sheath-plasma 

interface.  However, for self-consistency, the sheath width and the rf sheath potential 

have to satisfy the nonlinear Child-Langmuir (CL) law,13  

   4/3
eshd T/e ,  (2) 

where 2/12
ed )ne4/T(   is the electron Debye length and sh  is the rectified sheath  

potential defined subsequently [see Eq. ()]. The CL constraint makes the BC nonlinear 

and can lead to multiple roots. Also note that the BC incorporates plasma dielectric 

effects through ||||n ED εbs  , where s is the unit vector normal to the sheath. Only the 

waves with 0E||   make a significant contribution to the rhs of Eq. (1).  

 The rf ||E  component can be driven directly by an antenna or indirectly by 

coupling to another wave at the boundary. Except for special circumstances in the 

geometry (such as when the boundary is a flux surface) both wave polarizations are 

required to satisfy a general boundary condition such as Eq. (1), even in the metal wall 

limit.  In tokamak geometry, this usually implies that the fast wave (FW) with 0E||   

couples to the a slow wave (SW) with 0E||  . This SW E|| increases the loss of electrons 

along the field lines and amplifies the sheath potential. In what follows, we will assume 

that the SW is evanescent near the wall where the BC is applied (see Fig. 1) (e.g. either 

due to the density regime or strong collisional absorption). 

 A number of model problems using the BC (1) have been solved analytically in 

simple one-dimensional geometry. The reader is referred to the introduction of Ref. 14 or 

to Appendix A in Ref. 15 for detailed summaries of this work, which illustrates the 

effects of the sheath capacitance on the rf fields and on sheath formation.  

 More recently, a new finite-element code16-18 has been developed to calculate rf 

wave propagation in the scrape-off-layer (SOL) of a tokamak, including more realistic 

geometry of the magnetic field and of the material boundaries. The code incorporates the 

full sheath BC and computes the rf fields and the sheath formation self-consistently. The 

numerical calculations have shown that large-scale parallel computational resources are 
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required to carry out a simulation that treats both the ion scale ( pii /c~  ) for the FW, 

the electron scale ( pee /c~  ) for the SW, and the full sheath BC at the same time.  

 This problem motivates the present work. In this Brief Communication, we 

describe a reformulation of the sheath BC that allows the coupling of the FW to the SW 

to be treated analytically, so that only the ion scale needs to be resolved numerically. The 

basic idea is shown in Fig. 1. We consider the problem of a FW encountering a metal 

wall and assume that the plasma density is constant in a small region outside the sheath. 

The angle  between the B field and the metal boundary is assumed to satisfy the 

inequality 2/1
ie )m/m(  to obtain an electron-poor sheath, which is the situation of 

interest here. We also assume the ordering 

 ied    (3) 

where d  is the Debye length, and e , i  are the electron and ion skin depths defined 

previously.  

 
Fig. 1 Schematic of the sheath-plasma interface and two sheath BCs described in the text. The 

rf potential (x) increases linearly in the vacuum sheath region and then decays exponentially in 

the plasma region over the distance of an electron skin depth. The full sheath BC is applied at the 

sheath-plasma interface. When the SW is evanescent, an alternative approach is to apply the FW 

sheath BC at the beginning of the region where the SW is negligible. 
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 ~ d e

vacuum plasma  
(const. ne)

FW sheath BC

plate
normal to plate

incident FW

reflected FW
(x)

evan. SW

sheath BC

 ~ d e

vacuum plasma  
(const. ne)

FW sheath BC

plate
normal to plate

incident FW

reflected FW
(x)

evan. SW



   
 

 5 

 

 The smallness of the Debye length, which is the typical scale of the sheath width, 

permits integrating over the sheath to obtain the original sheath BC.10,11  In simulations 

using this BC, one does not have to resolve the sheath itself, but the SW must be resolved 

numerically in the plasma region just outside the sheath-plasma interface. In other words, 

the d  scale has been eliminated, but the e  scale (of the SW) still needs to be resolved 

numerically. For problems involving FW propagation, we can go one step further and 

eliminate the e  scale analytically, so that only the typical FW i scale needs to be 

resolved. As indicated in Fig. 1, this leads to a new BC which constrains only the FW.  

We will call this the “FW sheath BC,”  which is the main result of this paper. 

 An example for which the new BC applies is the “far field sheath” problem10,19-

22 in which the FW propagates into a boundary and cannot satisfy the Maxwell BCs 

without coupling to a SW. This situation arises when the single pass absorption is 

low10,19,20 or when the FW propagates nearly parallel to B in the SOL.21-24 The far field 

sheath problem has been addressed analytically in Ref. 19 in a one-dimensional (1D) 

model using the full sheath BC [Eq. (1)]. This earlier paper provides the starting point for 

our formulation of the new sheath BC for fast waves. The essential element for 

applicability of this model is not whether the sheaths are in the near-field or far-field, but 

that a FW is launched and is coupled to a strongly evanescent SW by the BC. 

 The sheath  BC in Eq. (4) can be written in the form 

  nD sEs   , (4) 

where all quantities are evaluated at the sheath-plasma interface, EεsDs nD , and 

the boundary is not assumed to coincide with a magnetic flux surface ( 0bs ). When 

this last condition is satisfied, the incident FW will not satisfy either the conducting wall 

BC or sheath BC without coupling to additional waves.  

 Following Ref. 19, we consider a minimal three-wave coupling model, consisting 

of an incident and reflected FW and an evanescent SW, denoted by subscripts 0, 1 and 2 

respectively. Thus, one can express the total rf electric field in Fourier space as 
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xjxik

j

2

0j
j

zzikyyikti eEeee eE 


   . (5) 

where the vectors without carats, )2,1,0j(j e , are the wave polarization vectors, not to 

be confused with the Cartesian unit vectors, )z,y,xj(ˆ j e . We define a coordinate 

system local to the sheath:  x denotes the direction normal to the sheath (with unit vector 

xês  and sheath located at x = 0) and (y, z) are the directions tangential to the sheath. In 

Eq. (5), we have assumed for simplicity that all waves have the same Fourier components 

in y and z, and Fourier analysis is possible because of the assumption of constant density 

in the vicinity of the wall. For each wave, xk  is determined numerically from zy kandk  

using the homogeneous plasma dispersion relation.  

 The wave polarization vectors je  are defined as follows in the limiting cases 

where approximate second-order dispersion relations are obtained.10,19 Using the FW 

ordering ||x
2 ,~n  , the wave polarization FWe  is given by  

  
)n(

i
Q,QC

2
||

x
FWFW







 nbne   . (6) 

For the SW ordering x||
2 ,~n   , the wave polarization SWe  is given by 

  
)n(

n
G,GC

2
||

||
SWSW





 bne    , (7) 

where CFW and CSW are normalization constants. Note that 0FW eb  and 0SW eb , 

so that the SW is required to obtain an E|| component and generate an rf sheath potential. 

 Substituting Eq. (5) into Eq. (4), one obtains the following solution19 for the field 

amplitudes of the reflected FW (E1) and evanescent SW (E2): 

 
21

10

0

2

21

02

0

1

E

E
,

E

E

ggs

ggs

ggs

ggs








    , (8) 

where E0 is the amplitude of the incident FW,  

 )(i jjjj eεskeg       (9) 
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and je  are the wave polarization vectors obtained from the homogeneous solution. 

Consistent with the ordering in Eq. (3), we assume 1/~xk iex   and neglect the 

exponential phase factors ~exp(ikxx) for the FW.  The first term in jg  arises from the 

usual metal wall BC, and the second term is the sheath capacitance effect from the sheath 

BC term. Thus, the usual metal wall BC is still recovered when 0 .  Note that Eq. (8) 

has the property that the BC couples the FW ( 10, gg ) to the SW ( 2g ). It was shown19 

that the resulting SW amplitude E2 is non-zero when the following three conditions are 

met: (i) there is a flux surface mismatch with the boundary ( 0bs ), as discussed 

above, (ii) the incident and reflected fast waves propagate in opposite directions, and (iii) 

the incident FW wavenumber k has a component in the bs direction. 

 Combining Eqs. (5) and (8), we find that the total FW field is 

  xx1ik
1

xx0ik
00FW eeE  eeE  , (10) 

where  is the parameter defined in Eq. (8) and the dependence on zy kandk,  has 

been suppressed. In our previous work on far-field fast waves, the incident FW amplitude 

E0 was specified as an input to the sheath calculation, and Eq. (8) gave the solution for 

the other wave amplitudes. Here, the total FW field FWE  is the fundamental quantity in 

formulating the boundary condition, so we need to invert Eq. (10) as follows 

 
10

FW0
1

10

FW1
0 E,E

ees

Ees

ees

Ees








   . (11) 

The constraint on the individual amplitudes 10 EandE  is given by the first relation in Eq. 

(8), which can be rewritten as 

 0EE 121002  ggsggs   . (12) 

The new “FW sheath BC” is obtained by combining Eqs. (11) and (12).  

 For electron-poor sheaths, obtained when 1)m/m( 2/1
ie  bs , Eqs. (11) and 

(12) combine to give the following BC  

   0FW021102  Eesggsesggs   , (13) 
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which imposes one scalar constraint on the total fast wave field, FWE . Using the 

substitution rule  ik  in Eq. (13), one obtains a relation among the spatial gradients 

of the FW field at the sheath-plasma boundary.  This is the main result of the paper. 

 The SW physics enters the FW BC through the factors involving g2. Also, note 

that the normalization of the polarization vectors cancels out of the BC, because each 

term involves a triple product of the normalizations of the three polarization vectors 

( SW
2
FW210 CCCCC  ). Finally, Eq. (4) shows that this BC reduces to the conducting wall 

BC when 0 . 

 It is straightforward to calculate the rf sheath potential using this formalism, as 

discussed in Ref. 19. The steady-state (DC) sheath potential is  

 erfshsh T3C  , (14) 

where the second term is the (approximate) Bohm sheath potential due to thermal 

electron loss, rf  is the rf sheath potential, and rfshC   is the “rectified” DC sheath 

potential (Csh is an order unity rectification coefficient) with the conducting boundary 

assumed to be at zero potential. The rf sheath potential is obtained by summing over all 

waves, but typically the SW makes the dominant contribution: 

 2

2

0j
jjrf EεsEεs  


   . (15) 

This can be seen as follows. When the B field mismatch factor bs   is not too small, the 

electron terms involving ||  dominate the sum, viz. j||j EbεbsEεs   2|| Ebεbs  . 

The last equality follows from the fact that the FW fields ( 10 ,EE ) have no component 

parallel to B. Thus, the SW 2||E Eb   determines the magnitude of the rf sheath 

potential in the electron-dominated regime. In the present model, 2E  is given as a 

function of the fast wave field  FWE  by Eqs. (8) and (11). 

 In summary, we have derived a new BC for self-consistently calculating the rf 

fields and rf sheath potential at the wall during FW propagation [see Eq. (13)].  The BC is 

homogeneous in the FW field amplitude and reduces to the metal wall BC in the limit 
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0  (vanishing sheath width). The BC is valid when the separation of scales in Eq. (3) 

applies. It contains the physics of coupling of a FW with 0E||   to a short scale length 

SW with 0E||  . This BC may be useful in rf wave propagation codes using finite-

elements at the boundary (e.g. see Refs. 16-18) to allow studies of FW propagation 

without having to resolve the short SW scale numerically.  
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