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Linear eigenvalue code for edge plasma in full

tokamak x-point geometry

D. A. Baver and J. R. Myra

Lodestar Research Corporation, Boulder Colorado 80301

M. V. Umansky

Lawrence Livermore National Laboratory

A new code is presented for solving linear eigenvalue problems from fluid

models of the edge plasma of tokamaks. The 2DX code solves linearized fluid

equations in a 2D cross-section of the plasma, with toroidal mode number resolv-

ing the third dimension. Geometry capabilities include both closed and open

field lines, allowing solution of x-point problems as well as a variety of other

toroidal and cylindrical systems. The code generates a pair of sparse matrices

forming a generalized eigenvalue problem which is then solved using a standard

sparse eigensolver package. Use of a specialized equation parser permits a high

degree of flexibility in both equations and coordinate systems. Both analytic

and full geometry benchmark cases are presented.
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1 INTRODUCTION

Fusion science in the 21st century is increasingly reliant on large scale computer

simulations. This has led to an increasing need for verification and validation

(V&V) [1]-[2] capability for large simulation codes.

Eigenvalue solvers for partial differential equations have a number of ad-

vantages as tools for verification of turbulence simulations. They are simpler

than full nonlinear simulations, thus are inherently less prone to error and can

be benchmarked adequately with a smaller and simpler set of test cases. They

require significantly less computing resources, thus allowing tests to be done

quickly and conveniently. Conversion of differential equations into matrix form

can be separated from solution of eigenvalues, thus providing additional infor-

mation for debugging purposes, as well as simplifying isolation of any errors

that do arise.

The 2DX code is an eigenvalue solver designed to operate in an x-point

topology. This makes it relevant to tokamak edge phyics, particularly modeling

the interaction between edge, scrape-off layer, and divertor plasmas. As such,

it can be used to benchmark turbulence codes simulating that region of the

plasma. In this paper, we present benchmarking of 2DX with the BOUT [4]-[5]

edge turbulence code.

In addition to its application as a benchmarking tool, the versatility of the

2DX code makes it very useful for physics applications. The ability to calculate

the growth rates of eigenmodes quickly makes it useful in determining stability

thresholds for plasma instabilities such as ELM’s [6]-[7]. Also, knowing the

2



spatial structure of dominant eigenmodes can provide insight into turbulence,

for instance allowing estimation of typical frequency and wavenumber bands for

fluctuations. In the direction parallel to the background magnetic field in the

scrape-off-layer plasma, the degree of connection of modes between the x-point

region and divertor plates is of interest [8]-[9]. An application of 2DX to this

problem is discussed in Sec. 4.2.3.

An additional noteworthy feature of the 2DX code is its use of a specialized

input format for parsing systems of equations. This gives the code an exceptional

degree of flexibility in handling different physics models. It also offers a number

of advantages from the standpoint of code verification. First, it splits each

problem into two parts: the equation language file, and the source code to parse

that equation language. While this introduces a potential source of error each

time a new set of equations is used, this problem can be easily isolated, thus

accumulating confidence in the source code across many different benchmark

cases. Second, the equation language file can be translated into analytic form,

thus allowing the user to determine, in an intuitive manner, precisely what

equations are being solved. This offers a considerable advantage over codes in

which equation sets are hard-wired into the source code, which is difficult to

read, mingles formula and numerical technique, and lacks concise expression.

Moreover, it maximizes transparency in the area where errors are most likely to

occur, and does so in a way that is accessible to the casual user.
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2 PROGRAM STRUCTURE

The 2DX code consists of two main parts, as well as a number of tools re-

quired to set up its input files and process its output files. The relation between

these parts is shown in Fig. 1. The tools shown in this figure (grid generation

tools, structure file viewer, data analysis tools) are currently implemented as

Mathematica worksheets, although Python scripts for grid generation are also

available. The 2DX code handles input and output as text files. The input

file contains lists of constants and input functions (including Jacobian factors)

on the grid. For simple problems and geometries, the input file can be created

rather easily by a small separate code or script. For complex problems, such

as the divertor geometry problem to be considered in Sec. 4.2.1, we employ a

Mathematica notebook that calculates functions such as coordinate systems cur-

vatures, shear, and Jacobians in toroidal geometry. This notebook can perform

high order interpolations to refine a magnetic geometry mesh that originates

from experimental equilibrium reconstructions.

The 2DX output file contains the specified number of eigenvalues and cor-

responding eigenfunctions on the mesh. These are extracted and processed by

separate data analysis tools. Again, for simple problems and geometries, a small

plotting code is all that is required. For complex problems in toroidal geom-

etry, Mathematica or IDL codes provide more sophisticated tools that make

use of the magnetic topology. Examples will be discussed later, in connection

with Figs. 9,10 and 16. Finally, the Structure file viewer, and the associated

procedure for creating structure files, will be discussed in Sec 2.4.
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The principal components of the 2DX code are the core 2DX program and

the eigenvalue solver. The core 2DX code generates a pair of sparse matrices in

coordinate list format (sometimes referred to as COO format), i.e. as a tuple

containing the (value, row, column) of each nonzero entry. These matrices form

a generalized eigenvalue problem,

Ax = λBx (1)

The pair of matrices is passed to an eigenvalue solver, which returns the

eigenvalues λ and eigenvectors x. In the current version of the code, the eigen-

value solver employed is SLEPc [3]. This eigensystem package can attain a

solution in a number of different ways, depending on user-selected options. Ex-

perience to date has achieved best results using a combination of a Krylov-Schur

algorithm [10] combined with a Cayley spectral shift technique [11]. The spec-

tral shift re-organizes the eigenvalues so that the eigenvalues with the largest

real part (i.e. the fastest growing modes, hence the modes of interest) are also

the largest absolute value eigenvalues. This is important because in a typical

eigenvalue problem arising from the solution of partial differential equations,

the reverse will be true: the largest absolute value eigenmodes will tend to be

high wavenumber, poorly resolved modes that are either strongly damped or

are neutrally stable with high frequency. Since sparse eigenvalue solution tech-

niques lose their advantage if more than a handful of eigenvalues are returned,

and since full eigenvalue solution techniques are impractical for large problems

due to unfavorable scaling, it is critically important to choose a solution method
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that prioritizes the modes of interest correctly.

Most of the distinguishing features of 2DX are in the core 2DX program,

and relate to how it sets up the eigenvalue problem. Matrices are built up from

built-in finite difference operators, boundary condition operators, and diagonal

matrices constructed from functions. These simple matrices are combined into

more complicated matrices using matrix addition and multiplication operations.

The sequence of these operations is controlled by a specialized equation parser,

using input in a data format called the equation language. The equation lan-

guage is capable of immense versatility; given a sufficiently large set of equation

language instructions, virtually any finite difference method of finite order or vir-

tually any boundary condition can be created from these basic building blocks.

This type of construction makes the code exceptionally flexible in what types

of problems it can solve or what numerical methods it can use. In addition, it

means that the 2DX source code itself contains only instructions for creating

elementary operator matrices, performing elementary matrix operations, and

parsing equation language files. This results in a code that is short, simple,

and easy to debug. The drawback to this approach is that it shifts much of the

burden of debugging to the various input files and the tools used to create these.

This drawback is addressed subsequently. The net benefit of this approach is

that 2DX possesses a modular structure that cleanly separates these tasks.
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2.1 Elementary operators

Matrices in 2DX are built up from elementary operators. In addition to diagonal

matrices used to represent profile functions or other functions derived from them,

there are four finite difference operators and up to six boundary operators. The

elementary differential operators (denoted u and l for upper and lower) are:

(∂ux )ix,iy;jx,jy =


− 1
dx if ix = jx, iy = jy

1
dx if ix+ 1 = jx, iy = jy

(2)

(∂lx)ix,iy;jx,jy =


1
dx if ix = jx, iy = jy

− 1
dx if ix− 1 = jx, iy = jy

(3)

(∂uy )ix,iy;jx,jy =


− 1
dy if ix = jx, iy = jy

1
dy if ix = jx, iy + 1 = jy

(4)

(∂ly)ix,iy;jx,jy =


1
dy if ix = jx, iy = jy

− 1
dy if ix = jx, iy − 1 = jy

(5)

The boundary operators are matrices that are zero everywhere except at

diagonal entries corresponding to grid points on a boundary. Thus, there are

boundary operators for the upper and lower boundaries in x and y. In addition,

there are two additional boundary operators that are offset by one grid cell from

the upper boundaries in x and y. These are used to create boundary conditions

on staggered grids.

From these basic operator matrices, it is possible to build up differential

operators of arbitrary order through successive addition and multiplication. For
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instance, suppose one wants to create a central difference second derivative

operator. In this case, one would simply multiply two elementary operators:

∂2x = ∂ux∂
l
x. Likewise, a central difference first derivative can be constructed by

adding two elementary operators and dividing by two: ∂cx = (∂ux + ∂lx)/2.

In practice, most models allow for non-uniform grids. To account for this,

the elementary operators must be multiplied by appropriate profile functions

containing geometry information. This results in operators more complicated

than the ones described above, but the overall concepts involved remain the

same.

2.2 Staggered grids

An option in the equation language file is to make certain variables indented.

This means that the last row of grid cells in one or both directions is deleted

for that variable. The purpose of this is to permit staggered grids. Since grid

points for that variable have one less row in one direction, they can be thought

of as being between grid points on a normal grid. By choosing appropriate

differential operators (upper or lower) in that direction for all terms linking the

indented variable to non-indented variables and vice versa, one can make this

concept a numerical reality.

The primary purpose of staggered grids in this code is to deal with numerical

issues arising when a second derivative of the eigenfunction arises from two first

derivative operators applied to different fields. For instance, as we will see in

Eq. 27-32, the δφ and δA equations interact via parallel derivatives, so that
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in the high collisionality limit there is an effective second parallel derivative

on δφ. If two central difference operators are used for the first derivative, the

resulting second derivative operator skips directly adjacent grid cells. As a

result, spurious eigenmodes with large k‖ emerge. Convolving first derivative

operators that are offset in opposite directions yields the correct form for the

second derivative operator, thus avoiding this problem. Given the underlying

flexibility of the 2DX code, other applications of this capability (such as ensuring

zero divergence of vector fields) are also possible.

2.3 Grid topology

In the present version of 2DX, the domain of the grid is divided into four regions.

This feature can be easily generalized to handle more complicated topologies.

The present form is suitable for a wide range of edge physics applications in

tokamak divertor geometry.

One of these regions is the edge. This is the region inside the separatrix. It

is bounded by periodic boundary conditions in y.

A second region is the scrape-off layer. This is the region outside the sepa-

ratrix but adjacent to the edge. It is subject to sheath boundary conditions in

y.

The other two regions are the private scrape-off layer. This is the region

opposite the x-point from the edge. It is subject to both matching boundary

conditions linking the two pieces of the private region, as well as sheath bound-

ary conditions. In allocating space on the grid, it is located on either side of the
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edge in y, and adjacent to the SOL in x.

The layout of these regions is shown in Fig. 2. Note that the x-point lies in

the interstices between grid points, thus the singularity at the x-point is avoided.

Because of the periodic boundary condition in the edge region, all eight grid

points adjacent to the x-point connect to each other to form an octagonal cell,

in contrast to the quadrilateral cells formed by other cycles of adjacent points.

2.4 Equation language

The equation langauge is a data file format containing all of the information the

2DX code needs to convert profile functions (i.e. temperature, density, magnetic

geometry) into matrices to solve. This consists of a number of parts, of which

three are of particular importance. These are the input language, the element

language, and the formula language.

The input language defines the format of data files containing integer and

real constants and profile functions. Here, the term profile function refers to

an input quantity (for example a coefficient of the differential equations) that

is specified on the 2D grid. Each entry in the input language consists of a data

label and instructions on what to do with the actual data. This allows the 2DX

code to determine whether a data block is supposed to contain an integer, a real

number, or a profile function. Moreover, each data block is assigned a unique

identifier so that it can be referenced by other parts of the equation language.

The element language consists of a series of basic operations that can be

applied to profile functions or to operators. This is used to build up all of

10



the differential operators used in an equation set, as well as any derived profile

functions (i.e. functions calculated from other functions). This is done by suc-

cessive application of basic binary or unary algebraic or matrix operations. For

algebraic operations, the current version of 2DX permits addition, subtraction,

multiplication, division, powers, exponentials, and linear interpolation. For ma-

trix operations, it permits addition, subtraction, multiplication, inverse, and

transpose.

The formula language is used to specify the eigenvalue equations from the ba-

sic operators and functions created by the element language. Thus it generates

the matrices required for a generalized eigenvalue problem. Since the equations

of interest may contain more than one field, the eigenvector and matrices are

larger than the number of grid points. That therefore means that the matrices

will be larger than the elementary functions and differential operators created

by the other parts of the language. To accomodate this, the 2DX code first

multiplies together a string of functions and operators to form a matrix block.

This block is then offset by adding integer multiples of its own size to the row

and column indices of the elements of that block; this is straightforward to do

for a sparse matrix in coordinate form, since row and column indices are simply

integers associated with each nonzero entry. Adding to row indices determines

which equation the term is in, whereas adding to the column index determines

which field the term multiplies. By adding together a succession of such terms,

the 2DX code is able to construct matrices to represent nearly arbitrary sets of

equations provided they correspond to a linear eigenvalue problem.
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The equation language can be converted via Python scripts between a nu-

merical format that can be read by 2DX and a symbolic format that can be

read by the user. In addition, a Mathematica script can be used to translate

the numerical format into a standard algebraic form using symbolic logic.

For a simple example of how the equation language works, consider the

following eigenvalue problem for δΦ:

∂

∂t
∇2
⊥δΦ = µii∇4

⊥δΦ (6)

This can be coded using the symbolic format of the equation language as:

gg ∗ dprp2 ∗ PHI = muii ∗ dprp4 ∗ PHI (7)

where the element language contains instructions for building the operators

dprp2 and dprp4 from elementary operators. This can then be translated into

the numerical format and read by the Mathematica script to yield the following:

∇2
⊥λδΦ = muii∇4

⊥δΦ (8)

where λ is the eigenvalue. In this particular case, the element language is only

used to define operators. In cases where the element language is used to define

functions, the equation viewer will unravel these equations so as to display

algebraic expressions of profile functions whenever possible.

The combination of symbolic format structure files and the Mathematica

viewer script provides a layer of protection against coding errors in the equation

language. Since the viewer script uses the same parsing logic as the 2DX code,

it therefore displays the equations as they will actually be run. Thus, if a term
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in the structure file is coded incorrectly, a discrepancy between the input and

viewer output will become evident.

3 PHYSICAL MODEL

3.1 Coordinate geometry and differential operators for

tokamak edge plasma

The equation language files used in the test cases presented later in this article

are based on a ballooning (field line following) coordinate system. This coor-

dinate system is also used by BOUT[4]-[5]. This coordinate system is defined

by:

x = ψ − ψs (9)

y = θ (10)

z = ζ −
∫
θ0

dθν(ψ, θ) (11)

where ζ is the toroidal angle, θ is the poloidal angle, ψ is poloidal flux, and ν is

the local safety factor.

Using toroidal symmetry of the equilibrium, we assume that the solution is

periodic in ζ. Then, by specifying the eigenfunction in the form:

δφ = φ1(x, y)einz (12)
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the potentially rapid (for large n) phase variation is extracted and the numerics

need only resolve the coefficient φ1. Although closely related to the eikonal

approximation [23] (a local approximation valid for n � 1, where φ1 can be

taken as a function of y alone) , Eq. 12 and the numerical formulation can in

principle be made exact (for infinite grid resolution).

The magnetic field can be calculated from the coordinates by introducing a

local ”safety factor” ν. This results in the following definition of B:

B = ν∇ψ ×∇θ +∇ζ ×∇ψ (13)

From this field-line following coordinate system we derive formulas for par-

allel and perpendicular gradients based on coordinate derivatives. For this pur-

pose we must construct profile functions containing relevant information about

the structure of the magnetic field. The principal geometry profile functions

used are:

 = ∇ψ ×∇θ · ∇ζ/B (14)

RBp = |∇ψ| (15)

kb = −nB/RBθ (16)

kψ = −nRBp
(
ν∇θ · ∇ψ
RB2

p

+

∫
θ0

∂

∂ψ
ν

)
(17)

κg = κ · b̂× êψ (18)

κn = κ · êψ (19)
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where

κ = b̂ · ∇b̂ (20)

êψ =
∇ψ
|∇ψ|

(21)

and Bθ is the poloidal field. The Jacobian quantities  and RBp define the

physical distances corresponding to the grid spacing, the quantities kb and kψ

define the eikonal wavenumbers orthogonal to the magnetic field in the b̂ × êψ

and êψ directions [23], and the quantities κg and κn are components of field-line

curvature.

Making the simplifying but non-essential assumption that parallel derivatives

are small compared to perpendicular derivatives, we then derive the following

basic operators:

∇‖ = 
∂

∂y
(22)

∇2
⊥ = −k2b −B (kψ − i∂xRBp)

1

B
(kψ − iRBp∂x) (23)

Cr = −κgRBp∂x + iκnkb − iκgkψ (24)

Of these operators, the curvature operator Cr is constructed by averaging

the operators ∂ux and ∂lx to give a central difference first derivative operator

with second order accuracy. The operator ∇2
⊥ alternates the use of ∂ux and

∂lx so as to yield a centered second derivative operator, also with second order

accuracy. The operator ∇‖ is used in terms that link variables on the staggered

grid to variables not on the staggered grid; for this reason, a single operator

of the type ∂uy or ∂ly is sufficient to achieve a central difference first derivative
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operator. Since operators of opposite types are used when going to and from

the staggered grid, successive operations of this type alternate upper and lower

derivatives so as to yield a centered second derivative operator.

3.2 Boundary conditions

Boundary conditions in the x direction are built into operators involving x

derivatives, by adding suitable multiples of the boundary operators. For all

of the test cases listed in the following section, the x boundary employs a zero

derivative boundary condition. This is chosen in order to permit the 2D system

to allow a 1D local limit, i.e. φ1 constant in x, thus facilitating comparison to

local analytic theory.

In the y direction, boundary conditions are more complicated. First of all,

there are two types of boundary conditions: phase-shift periodic and sheath,

with matching boundary conditions treated as a special case of phase-shift pe-

riodic. The layout of these is described in Fig. 2.

In the case of phase-shift periodic boundary conditions, the goal is to modify

the differential operators so as to apply smoothly to the solution in field-line

following coordinates, as described by the φ1 term in Eq. 12. Since the periodic

boundary condition also serves as a branch cut in z, it follows that a phase shift

must be applied at the branch cut. Noting that:

φ1(y = 0) = φ1(y = 2π)e−2πinq (25)

and also noting that the normal off-diagonal terms of the ∂y operators are

equal to 1/dy, it follows that the off-diagonal terms that need to be added
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to the matrix to achieve the phase-shift periodic boundary conditions can be

constructed by applying conjugation or sign inversion to terms of the form:

e2πinq

dy
(26)

Sheath boundary conditions depend on the underlying physics model. Be-

cause they can couple multiple fields, they are implemented as separate terms

in the model equations rather than as modifications to existing operators. For

instance, the boundary condition in a parallel current equation will typically

depend on potential, temperature, and density. In these cases an appropriate

formula is multiplied by a sum or difference of the built-in boundary condi-

tion operators. This approach permits the flexbility needed to simulate diverse

physical boundary conditions.

3.3 6-field fluid model for collisional plasma

While the 2DX code is capable of solving eigenvalues for a wide variety of equa-

tion systems, actually exercising this capability represents a potential source of

error. Each time a new equation set is converted into equation language form,

there is a possibility that one of the instructions in that file is incorrect. To

minimize this source of error, most of the test cases presented use subsets of

a standardized physics model. The standardized physics model is a linearized

version of BOUT equations [4]-[5], thus simplifying comparison between the two

codes. The model equations are expressed in dimensionless Bohm units, where

time is normalized to the ion cyclotron frequency Ωi and length is normalized

to the cold ion sound gyroradius ρs = cs/Ωi with c2s = Te/mi. The full set of
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model equations considered here is as follows:

γ∇2
⊥δΦ = −iω∗i∇2

⊥δΦ +
2B

n
Crδp−

B2

n
∂‖∇2

⊥δA+ Γ∇2
⊥δΦ + µii∇4

⊥δΦ (27)

γδn = −δvE · ∇n+
2

B
(Crδpe − nCrδΦ)− n∂‖δu− ∂‖∇2

⊥δA (28)

γδu = − 1

n
∇‖δp−

1

n
δb · ∇p− 2Ti

B
Crδu+ ∂‖µ‖∇‖δu (29)

γδTe = −δvE · ∇Te −
2(1.71)Te

3n
∂‖∇2

⊥δA−
2

3
Te∂‖δu

+
2

3
∂‖χ‖

(
∇‖δTe + δb · ∇Te

)
+

4Te
3B

(
1

n
Crδpe − CrδΦ +

5

2
CrδTe

)
(30)

γδTi = −δvE · ∇Ti −
2Ti
3n

∂‖∇2
⊥δA−

2

3
Ti∂‖δu

+
4Ti
3B

(
1

n
Crδpe − CrδΦ−

5

2
CrδTi

)
(31)

γ

(
n

δ2er
−∇2

⊥

)
δA = νe∇2

⊥δA− µn∇‖δΦ + µTe∇‖δn+ µTeδb · ∇n

+1.71µn∇‖δTe + 1.71nµδb · ∇Te (32)

where γ is the eigenvalue with real part corresponding to growth rate, µ =

mi/me, and δer is the reference electron skin depth. Other notations are stan-

dard (see e.g. Refs. [4],[5]). In addition, we define the following quantities:

ω∗i =
kb∂rpi
nB

(33)

δp = (Te + Ti)δn+ n(δTe + δTi) (34)

Cr = b× κ · ∇ (35)

∂‖Q = B∇‖(Q/B) (36)

δvE · ∇Q = −ikb(∂rQ)

B
δΦ (37)

δb · ∇Q = i
kb(∂rQ)

δ2erBµ
δA (38)
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The sheath boundary conditions for this model are as follows:

−∇2
⊥δA = −σn(Te + Ti)

1/2

(
1

2

δTe + δTi
Te + Ti

− 1

2

δTe
Te

+
δΦ

Te

)
(39)

δu = −σ δTe + δTi
2(Te + Ti)1/2

(40)

δTe = σ
4

9

χ‖

SET
1/2
e

(
∇‖δTe + δb · ∇Te

)
(41)

where σ = ±1.

Of the fields presented in this model, δu and δA are indented in y, i.e. they

use a staggered grid in the y direction. Thus, whereas the operator ∂‖ used in

Eqs. 27,28,30, and 31 uses the lower derivative ∂ly defined in Eq. 5, the operator

∇‖ used in Eqs. 29 and 32 uses the upper derivative ∂uy defined in Eq. 4. This

is in addition to the indented fields being evaluated on one less row of grid cells

in y than the other fields.

4 VERIFICATION AND TEST CASES

The 2DX code has been benchmarked against a number of different test cases.

Initial tests (not shown here) successfully reproduced analytical solutions of the

2D quantum harmonic oscillator problem and served to verify the basic 2DX

solver kernel. A suite of additional tests was developed to further test 2DX

together with the structure file associated with the six-field model. These are

described in detail in the present section.

Tokamak edge plasma combines complex magnetic geometry and very rich

physics, even in the framework of a linearized fluid model. The full two-fluid
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six-field model has numerous instability branches, which makes it challenging

to verify the full model. A verification approach taken here is testing several

selected instabilities standalone by reducing the full system to a particular subset

of equation terms that support a selected branch. Most of these cases permit

comparison to BOUT results. In addition, a number of them have analytic

solutions that results from both 2DX and BOUT can be compared to.

The analytic test cases were chosen in order to provide a representative

sample of instabilities commonly encountered in tokamak edge turbulence. The

resistive ballooning mode is important in the edge and scrape-off layer, and

the resistive drift wave is important in the plasma edge, particularly for steep

profiles. The electromagnetic version of the drift wave also tests Alfven wave

physics, known to be important for edge plasmas. Ion temperature gradient

modes are important throughout the plasma when the temperature profile varies

more rapidly than the density profile. In addition, the geodesic acoustic mode

was chosen in order to demonstrate the ability of the code and its equation set to

model more complex observed physical phenomena that depend in an essential

way on the toroidal geometry.

Thus the sequence of sub-models tests a large variety of physically relevant

terms from the full six-field model. Importantly the tests also progress from

simple slab geometries through more complex idealized tokamak models, and

finally to full x-point divertor geometry. For full geometry tests, test models

were chosen based on known instabilities relevant in their respective regions of

interest. In addition, simple models were chosen in order to isolate any numerical
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issues relating to the more complex topology or non-uniform grid these cases

present.

4.1 Analytic tests

4.1.1 Resistive ballooning model

The resistive ballooning model [12]-[14] uses the following subset of the 6-field

model:

γ∇2
⊥δΦ = +

2B

n
Crδp−

B2

n
∂‖∇2

⊥δA (42)

γδn = −δvE · ∇n (43)

−γ∇2
⊥δA = νe∇2

⊥δA− µn∇‖δΦ (44)

For the analytic test case, the profile functions are set so as to create a ho-

mogenous problem; this simplifies calculation of analytic solutions. Specifically,

the analytic geometry is a twisted annulus with a q of 1.5, and phase shift peri-

odic boundary conditions in the parallel direction. Density has an exponential

profile, and temperature is constant. Toroidal mode number is then calculated

from the variable kb by the formula n = kba/q where a is the radius of the

annulus.

The results from this test are compared to analytic approximations in the

high and low kz cases. In addition, this model has also been simulated using

BOUT. This provides further validation of the 2DX code.

The results from this are shown in Fig. 3. Circles represent eigenvalues
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calculated using 2DX. The curved lines are analytic approximations, and the

crosses are growth rates calculated from BOUT with associated error bars. Since

BOUT is a simulation and not an eigenvalue solver, the growth rates shown are

calculated by fitting an exponential to fluctuation amplitude, and deviation

from a pure exponential (for instance due to mode contamination) is used to

calculate the error bars.

4.1.2 Resistive drift wave model

Two resistive drift wave models [15]-[16] were tested, one retaining only electro-

static terms, one including electromagnetic terms. The electrostatic model is as

follows:

γ∇2
⊥δΦ = −B

2

n
∂‖∇2

⊥δA (45)

γδn = −δvE · ∇n (46)

−γ∇2
⊥δA = νe∇2

⊥δA− µn∇‖δΦ + µTe∇‖δn (47)

The electromagnetic model is as follows:

γ∇2
⊥δΦ = −B

2

n
∂‖∇2

⊥δA (48)

γδn = −δvE · ∇n (49)

γ

(
n

δ2er
−∇2

⊥

)
δA = νe∇2

⊥δA− µn∇‖δΦ + µTe∇‖δn+ µTeδb · ∇n (50)

Both of these models were tested in a slab geometry with periodic boundary

conditions. Unlike the resistive ballooning model, the test case required some
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special features to deal with properties of the model equations. In particular,

these model equations yield the maximum growth rate when both kx and ky are

large and in a particular proportion to one another; if growth rate is plotted as a

function of these parameters, it displays a long ridge with height asymptotically

approaching a maximum value. As a result, if high resolution is available in

both the x and y directions, the model will produce a dominant eigenmode that

is not well resolved in at least one of those directions. To solve this problem,

resolution in the x direction is highly restricted, and the grid size is made very

large so that the maximum resolvable derivative in that direction is small; the

latter restriction is necessary because the 2DX code cannot handle resolution

less than two in either direction. The resulting test case closely resembles a 1D

model, and can therefore be easily compared to analytic theory. Moreover, it

results in a dominant eigenmode that is well-resolved.

In this geometry, the model is compared to analytic theory and BOUT re-

sults for a number of values of k‖, which is controlled by adjusting the size of

the domain. In order to compare the model results without regards for dimen-

sional quantities, the modes are de-dimensionalized by constructing variables as

follows:

ω∗ = k⊥vpe ≡ k⊥
v2te

ωceLn
(51)

σ‖ =

(
k‖

k⊥

)2
Ωciωce
0.51νei

(52)

σ⊥ = 0.51νeiµ (53)
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The results from this comparison are shown in Fig. 4 - 5.

For domains with low minimum k‖, the dominant eigenmode will typically

have a higher k‖ than the minimum allowed. This results in a spurious eigen-

mode that masks actual trends in growth rate as a function of k‖. To solve this

problem, the code is set to return a number of eigenvalues. Their associated

eigenfunctions are then sorted by k‖ as measured by comparing phase angles of

adjacent grid points. This permits the lowest k‖ eigenvalue to be extracted and

compared to analytic theory.

4.1.3 Slab ion temperature gradient mode model

The slab ion temperature gradient mode model [17]-[18] uses the following subset

of the 6-field model:

γ∇2
⊥δΦ = −B

2

n
∂‖∇2

⊥δA (54)

γδn = −n∂‖δu− ∂‖∇2
⊥δA (55)

γδu = − 1

n
∇‖δp (56)

γδTi = −δvE · ∇Ti −
2

3
Ti∂‖δu (57)

−γ∇2
⊥δA = −µn∇‖δΦ + µTe∇‖δn (58)

As with the resistive drift wave model, the ITG model is tested in a geometry

with limited resolution in the x direction, in order to solve the equations in an

effectively 1D limit. Unlike the resistive drift wave case, with the ITG test the

code is set to return multiple eigenvalues, from which a parallel wavenumber
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can be calculated from the spatial structure of the eigenmode. This allows an

entire mode spectrum to be derived from a single run. More importantly, it

returns some modes from the neutrally stable branch of the ITG solution.

The results from this test are compared to analytic theory as well as to runs

from BOUT. The results from this are shown in Fig. 6.

4.1.4 Geodesic acoustic mode model

The geodesic acoustic mode model [19] uses the following subset of the 6-field

model:

γ∇2
⊥δΦ = +

2B

n
Crδp−

B2

n
∂‖∇2

⊥δA+ Γ∇2
⊥δΦ + µii∇4

⊥δΦ (59)

γδn = +
2

B
(Crδpe − nCrδΦ)− n∂‖δu− ∂‖∇2

⊥δA (60)

γδu = − 1

n
∇‖δp (61)

−γ∇2
⊥δA = νe∇2

⊥δA− µn∇‖δΦ + µTe∇‖δn (62)

The parameter Γ is set to a positive value in this model in order to provide

an instability drive for the GAM. Physically, this represents coupling of the

GAM to turbulence.

The geometry used in the GAM test is more complicated than in the previous

test cases. This is because the GAM can only exist if there is geodesic curvature.

Instead of a simple slab model, the GAM test is performed in an idealized torus.

Also, instead of performing a scan in parallel wavenumber, a scan is performed

instead in the q of the idealized torus, i.e. one with circular flux surfaces and
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low inverse aspect ratio.

The results from this are shown in Fig. 7. This plot compares the results

from the 2DX code to two different analytic solutions: one for the theoretical

GAM neglecting mode coupling (see below), and one for a zonal flow. Since both

modes are solutions of the model equation, and since the 2DX code returns the

dominant eigenvalue, both solutions are needed for comparison. The zonal flow

solution, which dominates at low q, matches the 2DX result in that regime,

whereas the analytic GAM matches the 2DX result in the high q regime.

A peculiar anomaly in this test is the presence of regularly spaced deviations

between the 2DX result and the analytic GAM. This is due to coupling with

sound waves. Taking into account coupling between the GAM at frequency:

ω2
g =

1

q2R2
+

2

R2
(63)

and spatial harmonics of the sound wave at frequency:

ω2
s =

m2

q2R2
(64)

predicts mode coupling, and hence modification of the simple result, when:

q =

√
m2 − 1

2
(65)

These results agree with the position of the deviations in Fig. 7.
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4.2 Full geometry tests

4.2.1 DIII-D test cases

The 2DX code has been tested and cross-benchmarked against BOUT in a full

geometry case based on the edge plasma of D-IIID [26]. The model tested was

the resistive ballooning model. The pressure profile was modified somewhat in

order to avoid having a dominant mode localized along the radial boundary, but

the magnetic geometry is fully realistic.

To best verify the capabilities of the 2DX code, we sought a scalar parameter

scan in which the eigenmodes vary from broad (to sample the magnetic geom-

etry) to localized (to permit comparison with an local analytical theory). Such

a test can be achieved by varying collisionality, through Zeff . For relatively

low values of collisionality, such as occur for these profiles with Zeff = 1, and

a torodial mode number n = 100, the modes fill the torus (but are stronger on

the outboard side). Increasing Zeff to artificially large values for purposes of

the verification test, we find eventual saturation of the growth rate with Zeff

as shown in Fig.8 as the modes collapse down to a local point in poloidal angle

on the low field side. This full range of conditions is adequately benchmarked

in this test between 2DX and BOUT. To obtain agreement for the low gamma,

Zeff= 1 case, it was necessary to employ finite µii, so that grid-induced dissipa-

tion in BOUT did not influence gamma (a rather low resolution was employed

for these tests in BOUT).

Also shown in the figure are the 2DX results for n = 103 and 104. As n
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is increased the eigenfunctions also collapse in radial location, and the growth

rate asympotically converges to 4.83× 105/s.

A simple local analytical result for the resistive ballooning mode is possible

in the limit where Zeff and n are both asymptotically large:

γ = cs

√
2

ReffLn
(66)

This result, shown by a green dashed line in Fig. 8 is also at 4.83 × 105/s.

Thus by a sequence of steps we have connected the BOUT and 2DX codes for

realistic tokamak parameters to a solid analytical asymptotic result.

In addition to growth rates, eigenmode structures can also be compared.

Figs. 9-10 show a comparison of eigenmode structures for this model for Zeff=1.

Fig. 9 is the 2DX result, while Fig. 10 is the BOUT result. While the two results

are not entirely identical, this can be attributed to differences in grids, as well as

differences in how the two codes handle branch cuts. In the latter case, such an

issue can arise because 2DX applies a phase shift at the branch cut in Fourier

space as described by Eq. 25, whereas BOUT applies this phase shift in real

space as described in Ref. [4].

Finally, the n=100 Zeff = 1 case, being representative of a realistic tokamak

problem of research interest, was used to analyze the scaling of the computa-

tional cost and numerical accuracy of the 2DX code. A number of test cases

were generated by interpolating the original profiles at varying resolution, and

the run time and leading eigenmodes were compared. Relative error was calcu-

lated by assuming the correct value to be an asymptote to a power law fit. In
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addition, the time required to set up the matrix was compared to the time spent

by SLEPc to solve it. These results are shown in Fig. 11-12. We conclude that

2DX displays near-linear convergence with grid size for this problem, and that

run time is dominated by the SLEPc eigenvalue solution. It should be noted

that the SLEPc package is parallelized, but the present test was run in serial

mode on a single Intel-PC processor.

4.2.2 LAPD test cases

A number of test cases were done in order to verify the potential of the 2DX code

for physics applications relevant to the Large Plasma Device (LAPD) [25]. Since

LAPD is an open field-line device with a straight magnetic field, generating the

correct geometry for this is simply a matter of using the SOL region of the 2DX

grid and applying geometric profile functions to create a cylindrical coordinate

system. In this case the x direction corresponds to radius (or more accurately

enclosed flux), and the y direction corresponds to the z direction in standard

cylindrical coordinates. Azimuthal angle is handled by toroidal mode number.

On this grid, the electrostatic resistive drift wave model (see Sec. 4.1.2) was

simulated using 2DX and compared to a 1D eigenvalue solver. Temperature

profile was assumed to be flat, and density profile was assumed to be of the

form:

n(r) = a0 + a1
(1 + a4x)ex − e−x

ex + e−x
(67)

x =
a2 − r
a3

(68)
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The results of this are shown in Figs. 13-14. From this it can be seen that

the 2DX results and the 1D eigenvalue results are in reasonable agreement.

4.2.3 Connection length study

In the edge region of a tokamak plasma, resistive ballooning instabilities can

give rise to coherent turbulent structures which are localized perpendicular to

B and extended along B. These structure are often referred to as blobs or blob-

filaments [20]. These structures ultimately carry energy to the divertor plates or

walls of the device; hence, it is of interest to understand the parallel structure

and length scale (i.e. connection length) of the filaments. Experiments have

attacked this problem by looking for correlations between the fluctuations at the

midplane, X-point and divertor regions [8]-[9]. Midplane to X-point correlations

have been seen [8] while an examination of midplane to divertor correlations [9]

suggests a connection only when the fluctuations are sufficiently far radially from

the X-point, in agreement with some earlier analytical theory [21] and eikonal

and numerical studies [23]-[24]. We show here that 2DX can shed insight on

this problem. It is one example of a physics application of the 2DX code which

utilizes the full divertor geometry capability.

We began with experimentally measured profiles and geometry for a dis-

charge on the National Spherical Torus Experiment [22]. To model a blob

filament, we introduced a local bump in the radial pressure profile. The radial

location of this bump was varied as shown in Fig. 15 with case a) on the closed

surfaces, case b) on the separatrix, and case c) entirely in the open field line
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region. The resulting eigenmode structures for each case are shown in Fig. 16.

These show an eigenmode that is stopped in the parallel direction at the X-

point when the bump is on the separatrix, but is more extended in the parallel

direction when the mode is radially further away from the x-point. Note in

particular that in case b) the mode does not reach the divertor plate, but in

case c) it does, as found in Ref. [9].

5 SUMMARY

A new eigenvalue solver, the 2DX code, has been developed. It is capable of

solving 2D linear partial differential equations in an x-point, periodic, or open

field line topology. While designed specifically for problems in plasma physics

pertaining to the edge of tokamaks, it is an immensely flexible code capable of

solving a wide variety of problems.

The 2DX code has been tested against a number of cases, both in sim-

ple analytic geometry and in magnetic geometry derived from plasma experi-

ments. These tests have been compared to analytic expressions and simulations

of BOUT. Both comparisons have produced positive results.

The 2DX code shows great potential both as a benchmarking tool for plasma

turbulence simulations and for direct physics applications. In the former case,

it provides a simple code to which more complex codes can be compared. In

the latter case, the ability to determine the spatial structure and growth rates

of dominant eigenmodes of a system without the computational cost of a full
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simulation (typically tens of CPU-hours for BOUT compared to a few CPU

minutes for 2DX) can provide useful insight even in turbulent systems where

dominant eigenvalues alone do not fully characterize its behavior.
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Figure captions

Figure 1: Flowchart of data flow through the 2DX package. Modularization of

the code into source code proper (2DX and SLEPc) as distinct from geometry

(grid file) or equation set (structure file) has enabled rapid development and

verification of the code.

Figure 2: Layout of the 2DX grid topology in the case of a single-null diverted

tokamak. Cells that are adjacent on this chart are treated as adjacent by the

code with the exception of cells adjoining the blue or purple lines; these are

subject to a wraparound condition making them adjacent to more distant cells

as indicated by the arrows.

Figure 3: Growth rate vs. kb for resistive ballooning model. Black dots rep-

resent 2DX results, blue crosses represent BOUT results. The red curves are

analytic approximations for large or small kb, whereas the dashed line is an

asymptotic solution for large kb.

Figure 4 Growth rate vs. σ‖ for resistive drift wave. The blue and purple lines

are analytic solutions for the electrostatic and electromagnetic models, respec-

tively. The blue and green dots are the fastest growing eigenvalues from a 2DX

run, whereas the orange and red dots (obscured by the blue and green dots

for large σ‖) are the eigenvalues corresponding to the longest wavelength eigen-

modes from the same run.
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Figure 5 Frequency vs. σ‖ for resistive drift wave. The blue and purple lines are

analytic solutions for the electrostatic and electromagnetic models, respectively.

The blue and green dots are the fastest growing eigenvalues from a 2DX run,

whereas the orange and red dots (obscured by the blue and green dots for large

σ‖) are the eigenvalues corresponding to the longest wavelength eigenmodes

from the same run.

Figure 6: Growth rate vs. k‖ for ion temperature gradient mode model. Blue

crosses are eigenvalues from a 2DX run as functions of the k‖ value calculated

from each corresponding eigenmode. Red crosses are analytic solutions calcu-

lated at the same k‖ values as 2DX eigenmodes. The green circles are BOUT

results.

Figure 7: Growth rate vs. q for geodesic acoustic mode model. The blue curve

represents results from the 2DX code. The tan curve is an analytic solution for

the GAM mode, whereas the red curve is an analytic solution for a zonal flow

mode.

Figure 8: Growth rate vs. Zeff for resistive ballooning mode in D-IIID edge

geometry. These results are for mode number n=100. The black lines at the

right hand side represent 2DX solutions for µii = 0 and n = 102,103, and 104.

The dashed green line is an analytic solution assuming both Zeff and mode
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number are large.

Figure 9: Eigenmode structure from 2DX for resistive ballooning mode in D-

IIID edge geometry. Dots indicate the positions of grid points in the 2DX mesh.

Colors indicate absolute value of relative amplitude, whereas uncolored regions

indicate values near zero.

Figure 10: Eigenmode structure from BOUT for resistive ballooning mode in

D-IIID edge geometry. Dots indicate the positions of grid points in the BOUT

mesh. Colors indicate absolute value of relative amplitude, whereas uncolored

regions indicate values near zero.

Figure 11: Log-log plot of the relative error in the eigenvalues for a divertor-

geometry solution of the resistive ballooning mode. Various resolutions for these

cases with n x n grids are shown. The solid red line is a least-squares power law

fit. The dashed black line is a 1/n power law fit.

Figure 12: Log-log plot of the (single processor) CPU time for various grid res-

olutions where n =
√
nxny. The solid blue line is a least-squares power law fit

to all the data. Red points indicate the square-grid runs. Green points indicate

matrix set-up time which is more than an order of magnitude smaller than total

computational time.
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Figure 13: Growth rates as a function of mode number for LAPD eigenvalue

scan. Red circles indicate 2DX results, blue circles indicate results from a 1D

eigenmode solver.

Figure 14: Freqeuncies as a function of mode number for the LAPD eigenvalue

scan. Red circles indicate 2DX results, blue circles indicate results from a 1D

eigenmode solver.

Figure 15: Pressure profiles used in the 2DX/NSTX connection length study.

The curves labeled a, b, and c represent different perturbed pressure profiles

used to control the location of the dominant eigenmode.

Figure 16: Eigenmodes of the resistive ballooning model from the 2DX/NSTX

connection length study. Red indicates high eigenmode amplitude, blue indi-

cates low eigenmode amplitude. The eigenmodes a, b, and c are calculated using

the corresponding pressure profiles from Fig. 15.
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