Theory and Experimental Analysis of Blobs in the NSTX Boundary Plasma*

J.R. Myra, D.A. D'Ippolito (Lodestar), D.P. Stotler, S.J. Zweben (PPPL), R. Maqueda, and the NSTX Team

with acknowledgement to

D.A. Russell (Lodestar)

*Work supported by U.S. DOE grants/contract DE-FG03-02ER54678, DE-FG03-97ER54392 and DE-AC02-76CH03073.

Introduction

Background & Motivation

- Both theory and experiment from many devices suggest that convective "blob" transport in the SOL can compete with and/or dominate diffusion.
- Convective "blob" transport in the SOL is important:
 - controls density in far SOL ⇒ main chamber recycling
 - chemical erosion, wall particle content (tritium inventory)
 - o may impact energy flow in SOL (ELMs) ⇒
 influence divertor heat loads and possibly short
 circuit divertor (heat goes across not along B)
- Fundamental understanding of SOL transport is badly needed.
 - predictive models of SOL width for divertor design (ITER)
 - o SOL environment for RF antennas
 - H-mode formation and control
- Gas Puff Imaging (GPI) diagnostic enables 2D visualization of edge/SOL turbulence
 - o blob-like objects observed on GPI
 - unique opportunity for analysis and comparison with basic theory models

Outline of the poster

- I. Extracting n_e and T_e of a blob from GPI intensity data
- II. Statistical blob model and comparison with GPI data
- III. 2D fluid simulation comparison with GPI data

I. Extracting n_e and T_e of a blob from Gas Puff Imaging (GPI) intensity data

for GPI experiment see Lowrance et al., poster LP1.006

Procedure

Theory

• Intensity of light emission I is related to the neutral density n₀, the plasma density and temperature n_e and T_e, and an atomic physics function F by

$$I = n_0 F(n_e, T_e)$$

- If n_0 is known and the 2D image of intensity I is measured by the GPI camera, then F can be inverted for n_e and T_e if we assume that $T_e = T_e(n_e)$.
- $T_e = T_e(n_e)$ is justified for interchange turbulence when $E \times B$ turbulent motion passively convects n_e and T_e together. [Meier (2001), Rudakov (2002)]
- The mapping F-1(I/ n₀) to n_e and T_e is determined from the equilibrium frame using the Thompson Scattering (TS) data to calibrate I.
- On the time and space scales of the turbulence we assume n_0 = constant, i.e. calculate n_0 for the equilibrium and use it for the turbulence
- caveat: parallel plasma losses are neglected. Applies for fast moving plasma blobs with $\tau_{convection} < \tau_{\parallel}$

basic idea: measure I and map to n_e and T_e from a knowledge of n_0

Schematic of inversion procedure I \leftrightarrow n_e , T_e

nonlinear interchange mode and blob formation

$$I = n_0 F(n_e, T_e)$$
equilibrium:
$$TS \Rightarrow n_e, T_e$$

$$DEGAS \Rightarrow n_0$$

given n_0 we can map $I \leftrightarrow n_e$ in turbulent state

Equilibrium calibration

Goal

- Use the calculated neutral density (not absolutely calibrated), the TS data and an equilibrium GPI frame to construct the mappings $I \rightarrow n_e, T_e$ that will be used to interpret the turbulent GPI images.
- Here *equilibrium* means quiescent background plasma on which intermittent *blobs* propagate.

Neutral density

- calculated from DEGAS-2 using TS profiles and geometry as input
 - o see Stotler et al., poster LP1.007
- shifted and rotated so that the calculated emission pattern aligns with the GPI emission image
- fit to a separable function of pseudo-flux coordinates (x, y) = (radial, poloidal)

Equilibrium

- take the time *median* over the 28 frames of the GPI movie as the equilibrium GPI frame
 - median eliminates intermittent objects (blobs) from the equilibrium
- use smooth fits to the TS data projected along field lines to construct the *equilibrium* $n_e(x)$, $T_e(x)$ profiles

Sample equilibrium reconstruction

Radial dependence of neutral profile $n_0(R)$ from DEGAS-2 (arbitrary normalization). R values are flux mapped to the midplane.

Comparison of reconstructed profiles with TS data. black dots: TS data; orange curve: reconstructed profiles using our procedure on the equilibrium frame.

Reconstruction is not accurate into the core where both I and n_0 become small. (i.e. one gets F = 0/0)

Compare equilibrium & turbulent frames

DEGAS equilibrium (pseudo-frame)

median frame

Upper portion of the image plane of the GPI camera. Reconstruction is poor to the lower left (I and n_0 small)

turbulent (blobby) frame

comparison of cuts across the frame

equilibrium dashed, blobby solid

notes

- cuts normal to the flux surfaces (also see 2D images) suggest that the blob is not completely detached, and has somewhat of a radial streamer character
- intensity appears detached because n₀ increases strongly to the right
- the blob or radial streamer in this H-mode data (NSTX #108311) has a characteristic
 - \circ n_e ~ 10¹³/cm³
 - \circ T_e ~ 20 eV.

II. Statistical blob model and comparison with GPI data

Model: blob train passing a probe

$$n(t) = n_0 \exp \left[\xi \left(\sin \frac{2\pi t}{\tau} - 1 \right) \right]$$

Above: n(t) for various values of ξ

Statistic moments obtained by analytic calculations: $< n >= n_0 e^{-\xi} I_0(\xi) \, ; \, \, \sigma = n_0 e^{-\xi} \sqrt{I_0(2\xi) - I_0(\xi)^2} \, \, \text{etc.}$

GPI Data

- use the 28 GPI movie frames and assumed statistical invariance in y to perform statistical averages
- movie of H-mode shot shows one large blob, several smaller, less obvious ones, and some fluctuations
- analysis is based on statistics of intensity I
 - statistics of n_e is similar but noisier due to errors in inversion process
- distribution of blob amplitudes and impact parameters fills in shaded area below characteristic curve of model
- skewness S increases with x (distance into SOL)
- characteristic event amplitude σ increases with x
- these features are similar to what has been reported from probe data: here we can see the 2D patterns that go with the statistics

Statistics of emission from GPI movie for NSTX H-mode data. The s vs. S plot is insensitive to nonlinearities in $I(n_e, T_e)$.

III. 2D nonlinear fluid simulation comparison with GPI data

- compare the properties of a blob observed with GPI (e.g. radial and poloidal velocity, shape and size, spin ...) with analytical theory and numerical simulations
 - o S.I. Krasheninnikov, Phys. Lett. A 283, 368 (2001).
 - o D.A. D'Ippolito, J.R. Myra, S.I. Krasheninnikov, Phys. Plasmas 9, 222 (2002).

2D nonlinear simulation code

$$\frac{d}{dt}\nabla^2\Phi = \alpha(\Phi - \Phi_B) - \frac{\beta}{n}\frac{\partial p}{\partial y} - \nu\nabla^2\Phi$$

$$\frac{dn}{dt} = D\nabla^2 n$$

where

$$\frac{d}{dt} = \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla$$

$$\mathbf{v} = \mathbf{b} \times \nabla \Phi$$

$$\Phi_B = \Phi_{B0} T(n)$$
EXB convection
$$\mathbf{v} = \mathbf{b} \times \nabla \Phi$$

- drop d/dt $\nabla^2 \Phi$ for large blobs $(\rho_s/a)^4 \ll \alpha$ \Rightarrow coherent objects not turbulence
- diffusion term D is small (just for numerical smoothness)
- take $v \sim v \cdot \nabla \sim \Phi_{B0}/a_s^2$ where $a_s^2 \equiv v/\alpha$ is the viscous smoothing radius
- $\beta/\alpha \equiv L_{\parallel}/R \equiv q_{eff}$ controls the blob's radial motion

Code / GPI data comparison

Comparison of simulated (left) and GPI (right) images at two times, t=0 (top) and $t=40~\mu s$ (bottom) for (H mode shot NSTX #108311). Camera view is indicated by rectangle on GPI images. Midplane R is indicated.

Simulation Notes:

- background n_e and T_e profiles from Thompson data
- initial condition for blob
 - n_e and T_e peak amplitude is taken from reconstruction procedure
 - o size is taken from GPI image
- simulated emission intensity is obtained from effective 2D neutral density profile (DEGAS-2, Stotler, et al., paper LP1.007) and atomic physics

Main features:

- Blob moves down (poloidally) because of E×B drift in Bohm sheath potential.
- Blob moves out (radially) because of curvature drift.
- Blob changes shape in time and leaves a wake (radial streamer) because of drag on background plasma. Leading edge also steepens (as seen in probe data).

Blob density contours from simulation.

Also:

R (cm)

- simulated $t = 40 \mu s$ image is brighter than GPI
 - o may indicate some blob cooling is occurring
 - o uncertainties in orientation of image wrt. n₀
- emission brightens between t = 0 and $40 \mu s$ because blob is propagating into region of increasing $n_0(x)$

radial velocity

Evolution of radial velocity for simulated and observed blob (H mode shot NSTX #108311). $q_{eff} = 13.5$ fits the data well.

Simulation Notes:

- simulation is run longer than data to allow transient to relax
- spinning blob: $\Phi_{B0} = 4.5$, parallel connection to divertor plates is assumed
- simulation parameters are $q_{eff} = 13.5$ chosen to fit the data, $a_s = 10$.
- taking uncertainty of parameters into account, $q_{eff} > 8$ is needed to give reasonable agreement with observed v_x .
- need to compare $q_{eff} = L_{\parallel}/R$ with geometrical value from EFIT

poloidal velocity

Poloidal velocity vs. blob position (mapped to the midplane) for simulated and observed blob (H mode shot NSTX #108311).

Notes:

- same simulation case as above
- Bohm sheath $\Phi \sim 4.5$ T_e would give monotone v_y
 - \circ near separatrix Reynolds Stress reverses E_r ? (hint of this in data)
- simulated velocity is too small for all reasonable parameter choices \Rightarrow additional mechanism for edge E_r necessary
 - o toroidal rotation?:
 - would need $v\zeta \sim 6 (B\zeta/B_{\theta})$ km/s
 - $E_r \sim 0.6 \text{ kV/m}$

role of blob spin and qeff in simulations

Evolution of radial position of blob in simulations that vary blob spin and q_{eff} . Similar radial velocities (that fit data) are achieved with smaller $q_{eff} = 5$ if the blob doesn't spin.

Notes:

- spin \Rightarrow $\Phi_{B0} = 4.5$
 - o parallel connection to divertor plates
 - \circ sheath potential $\Phi \sim T$
 - \circ local max of T \Rightarrow spin
- no spin $\Rightarrow \Phi_{B0} = 0$
 - o no parallel connection to divertor plates
 - T varies along B, is small at plates
 - blob is localized by resistivity near X-points (analogous to RX mode seem in BOUT and BAL codes)
- spin slows blob down for same qeff
- spinning blob can be trapped by shear layer

Conclusions

- Given the neutral density, the emission intensity I from the GPI diagnostic can be "inverted" to give ne and Te for interchange turbulence.
- A sample NSTX H-mode blob has a peak n_e and T_e that is characteristic of its birth surface: $n_e \sim 10^{13}/\text{cm}^3$, $T_e \sim 20 \text{ eV}$.
 - blob has a radial streamer character, and is more detached in emission I than in n_e because of n₀ profile
- A simple statistical model may be useful in interpreting data. $\sigma(S)$ is non-monotonic; skewness S increases as one goes into the SOL.
- Nonlinear 2D fluid simulations capture many features of the GPI data: poloidal and radial motion, shape distortion.
- NSTX H-mode #108311 has a significant E_r in the SOL other than that of the Bohm sheath. Toroidal rotation may be a plausible explanation.
- The radial blob velocity can be reproduced by the simulations in two scenarios with very different implications:
 - spinning blob with q_{eff} ~ 10 ⇒ parallel connection (and heat pulse propagation) to the divertor plates.
 Geometry alone may not allow this large a q_{eff}, ⇒ more than ∇B (neutral wind, centrifugal)?
 - o non-spinning blob with $q_{eff} \sim 5$. \Rightarrow parallel disconnection from plates due to X-point or $\nabla_{\parallel}T$ effects (and hence short-circuiting of the divertor).
- Simulations elucidate blob dynamics:
 - \circ Spin slows down blob v_x ,
 - o Spinning blob can be trapped by shear flow layer.