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Introduction 

Background & Motivation 
• Both theory and experiment from many devices 

suggest that convective "blob" transport in the SOL 
can compete with and/or dominate diffusion. 

• Convective "blob" transport in the SOL is important: 
o controls density in far SOL ⇒ main chamber 

recycling 
� chemical erosion, wall particle content 

(tritium inventory) 
o may impact energy flow in SOL (ELMs) ⇒ 

influence divertor heat loads and possibly short 
circuit divertor (heat goes across not along B) 

• Fundamental understanding of SOL transport is badly 
needed. 
o predictive models of SOL width for divertor 

design (ITER) 
o SOL environment for RF antennas 
o H-mode formation and control 

• Gas Puff Imaging (GPI) diagnostic enables 2D 
visualization of edge/SOL turbulence 
o blob-like objects observed on GPI 
o unique opportunity for analysis and comparison 

with basic theory models 

Outline of the poster 
I. Extracting ne and Te of a blob from GPI intensity data 

II. Statistical blob model and comparison with GPI data 
III. 2D fluid simulation comparison with GPI data 



 3 

I. Extracting ne and Te of a blob from 
Gas Puff Imaging (GPI) intensity data 
 
for GPI experiment see Lowrance et al., poster LP1.006 

 
Procedure 

Theory 
• Intensity of light emission I is related to the neutral 

density n0, the plasma density and temperature ne and 
Te, and an atomic physics function F by  

I = n0 F(ne, Te) 
• If n0 is known and the 2D image of intensity I is 

measured by the GPI camera, then F can be inverted 
for ne and Te if we assume that Te = Te(ne). 

• Te = Te(ne) is justified for interchange turbulence 
when E × B turbulent motion passively convects ne 
and Te together. [Meier (2001), Rudakov (2002)] 

• The mapping F-1(I/ n0) to ne and Te is determined 
from the equilibrium frame using the Thompson 
Scattering (TS) data to calibrate I. 

• On the time and space scales of the turbulence we 
assume n0 = constant, i.e. calculate n0 for the 
equilibrium and use it for the turbulence 

• caveat: parallel plasma losses are neglected.  Applies 
for fast moving plasma blobs with τconvection < τ|| 

 
basic idea: measure I and map to ne and Te  

from a knowledge of n0 
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Schematic of inversion procedure I ↔↔ ne , Te 
 
nonlinear interchange mode and blob formation 
 
 
 

ne, Te 

ne, Te 

ne, Te 

ne, Te 

I = n0 F(ne, Te) 
equilibrium: 
TS ⇒ ne, Te 
DEGAS ⇒ n0 

 

passive convection assumption 
Te = Te(ne)  

⇒ 
I = n0 F(ne) 

⇒ 
given n0 we can map 

I ↔ ne 
in turbulent state 
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Equilibrium calibration 

Goal 
• Use the calculated neutral density (not absolutely 

calibrated), the TS data and an equilibrium GPI frame 
to construct the mappings I → ne,Te that will be used 
to interpret the turbulent GPI images. 

• Here equilibrium means quiescent background plasma 
on which intermittent blobs propagate. 

Neutral density 
• calculated from DEGAS-2 using TS profiles and 

geometry as input 
o see Stotler et al., poster LP1.007 

• shifted and rotated so that the calculated emission 
pattern aligns with the GPI emission image 

• fit to a separable function of pseudo-flux coordinates 
(x, y) = (radial, poloidal) 

Equilibrium 
• take the time median over the 28 frames of the GPI 

movie as the equilibrium GPI frame 
o median eliminates intermittent objects (blobs) 

from the equilibrium 
• use smooth fits to the TS data projected along field 

lines to construct the equilibrium ne(x),Te(x) profiles 
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Sample equilibrium reconstruction 
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Radial dependence of neutral profile n0(R) from DEGAS-2 
(arbitrary normalization).  R values are flux mapped to the 
midplane. 
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Comparison of reconstructed profiles with TS data.  black 
dots: TS data; orange curve: reconstructed profiles using 
our procedure on the equilibrium frame.   

 
 
Reconstruction is not accurate into the core where both I 
and n0 become small. (i.e. one gets F = 0/0) 

n0 

ne 
Te 
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Compare equilibrium & turbulent frames 

DEGAS equilibrium (pseudo-frame) 

    

median frame 

    

Upper portion of the image plane of the GPI camera. 
Reconstruction is poor to the lower left (I and n0 small) 

turbulent (blobby) frame 

   

⇒ 

I ne Te 

ne Te I 

⇒ 

ne Te I 

radial 

poloidal 
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comparison of cuts across the frame  
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equilibrium dashed, blobby solid 

 

notes 
• cuts normal to the flux surfaces (also see 2D images) 

suggest that the blob is not completely detached, and 
has somewhat of a radial streamer character 

• intensity appears detached because n0 increases 
strongly to the right 

• the blob or radial streamer in this H-mode data (NSTX 
#108311) has a characteristic  
o ne ~ 1013/cm3  
o Te ~ 20 eV. 
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II.  Statistical blob model and 
comparison with GPI data 
Model: blob train passing a probe 
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Above: n(t) for various values of ξ 
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Statistic moments obtained by analytic calculations: 
)(Ienn 00 ξ>=< ξ− ; 2

000 )(I)2(Ien ξ−ξ=σ ξ− etc. 
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GPI Data 
• use the 28 GPI movie frames and assumed statistical 

invariance in y to perform statistical averages 
• movie of H-mode shot shows one large blob, several 

smaller, less obvious ones, and some fluctuations 
• analysis is based on statistics of intensity I 

o statistics of ne is similar but noisier due to errors 
in inversion process 

• distribution of blob amplitudes and impact parameters 
fills in shaded area below characteristic curve of 
model 

• skewness S increases with x (distance into SOL) 
• characteristic event amplitude σ increases with x 
• these features are similar to what has been reported 

from probe data: here we can see the 2D patterns that 
go with the statistics 

  

Statistics of emission from GPI movie for NSTX H-mode 
data.  The s vs. S plot is insensitive to nonlinearities in 
I(ne,Te). 
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III.  2D nonlinear fluid simulation 
comparison with GPI data 

• compare the properties of a blob observed with GPI 
(e.g. radial and poloidal velocity, shape and size, spin 
…) with analytical theory and numerical simulations 
o S.I. Krasheninnikov, Phys. Lett. A 283, 368 (2001). 
o D.A. D'Ippolito, J.R. Myra, S.I. Krasheninnikov, Phys. 

Plasmas 9, 222 (2002). 
 

2D nonlinear simulation code 
 
 

 Φ∇ν−
∂
∂β−Φ−Φα=Φ∇ 2

B
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• drop d/dt ∇2 Φ for large blobs (ρs/a)4 << α  
⇒ coherent objects not turbulence 

• diffusion term D is small (just for numerical 
smoothness) 

• take ν ~ v⋅∇ ~ ΦB0/as2 where as2 ≡ ν/α is the viscous 
smoothing radius  

• β/α ≡ L||/R ≡ qeff controls the blob's radial motion 

ion polarization 
 drift 

sheath  
potential  

curvature 
 drift viscosity 

diffusion 

ExB convection 

Bohm sheath potential 
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Code / GPI data comparison 
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Comparison of simulated (left) and GPI (right) images at 
two times, t = 0 (top) and t = 40 µs (bottom) for  (H mode 
shot NSTX #108311).  Camera view is indicated by 
rectangle on GPI images. Midplane R is indicated.  

GPI data code simulation 
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Simulation Notes: 
• background ne and Te profiles from Thompson data 
• initial condition for blob  

o ne and Te peak amplitude is taken from 
reconstruction procedure 

o size is taken from GPI image 
• simulated emission intensity is obtained from effective 

2D neutral density profile (DEGAS-2, Stotler, et al., 
paper LP1.007) and atomic physics 

Main features: 
• Blob moves down (poloidally) because of E×B drift in 

Bohm sheath potential.   
• Blob moves out (radially) because of curvature drift.   
• Blob changes shape in time and leaves a wake (radial 

streamer) because of drag on background plasma.  
Leading edge also steepens (as seen in probe data). 
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Also: 
• simulated t = 40 µs image is brighter than GPI 

o may indicate some blob cooling is occurring 
o uncertainties in orientation of image wrt. n0 

• emission brightens between t = 0 and 40 µs because 
blob is propagating into region of increasing n0(x) 

R (cm) 

Blob 
density 
contours 
from 
simulation. 
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radial velocity 
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Evolution of radial velocity for simulated and observed 
blob (H mode shot NSTX #108311).  qeff = 13.5 fits the 
data well. 

 
Simulation Notes: 

• simulation is run longer than data to allow transient to 
relax 

• spinning blob: ΦB0 = 4.5, parallel connection to 
divertor plates is assumed 

• simulation parameters are qeff  = 13.5 chosen to fit the 
data, as = 10. 

• taking uncertainty of parameters into account, qeff  > 8 
is needed to give reasonable agreement with observed 
vx. 

• need to compare qeff = L||/R with geometrical value 
from EFIT 

vx (m/s) 

t (µs) 

GPI 

code 
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poloidal velocity 
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Poloidal velocity vs. blob position (mapped to the 
midplane) for simulated and observed blob (H mode shot 
NSTX #108311).   

 
Notes: 

• same simulation case as above 
• Bohm sheath Φ ~ 4.5 Te would give monotone vy 

o near separatrix Reynolds Stress reverses Er ? 
(hint of this in data) 

• simulated velocity is too small for all reasonable 
parameter choices ⇒ additional mechanism for edge 
Er necessary 
o toroidal rotation?: 

� would need vζ ~ 6 (Bζ/Bθ)  km/s 
� Er ~ 0.6 kV/m 
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role of blob spin and qeff in simulations 
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Evolution of radial position of blob in simulations that vary 
blob spin and qeff.  Similar radial velocities (that fit data) 
are achieved with smaller qeff = 5 if the blob doesn't spin. 

Notes: 
• spin ⇒ ΦB0 = 4.5 

o parallel connection to divertor plates 
o sheath potential Φ ∼ Τ 
o local max of T ⇒ spin 

• no spin ⇒ ΦB0 = 0 
o no parallel connection to divertor plates 

� T varies along B, is small at plates 
� blob is localized by resistivity near X-points 

(analogous to RX mode seem in BOUT and 
BAL codes) 

• spin slows blob down for same qeff  
• spinning blob can be trapped by shear layer 

tΩci 

no spin 
qeff  = 5 

x/ρs spin 
qeff  = 13.5 

spin 
qeff  = 5 
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 Conclusions 
 

• Given the neutral density, the emission intensity I 
from the GPI diagnostic can be "inverted" to give ne 
and Te for interchange turbulence. 

• A sample NSTX H-mode blob has a peak ne and Te 
that is characteristic of its birth surface:  ne ~ 
1013/cm3, Te ~ 20 eV. 
o blob has a radial streamer character, and is more 

detached in emission I than in ne because of n0 profile 
• A simple statistical model may be useful in 

interpreting data.  σ(S) is non-monotonic; skewness S 
increases as one goes into the SOL. 

• Nonlinear 2D fluid simulations capture many features 
of the GPI data: poloidal and radial motion, shape 
distortion. 

• NSTX H-mode #108311 has a significant Er in the 
SOL other than that of the Bohm sheath.  Toroidal 
rotation may be a plausible explanation. 

• The radial blob velocity can be reproduced by the 
simulations in two scenarios with very different 
implications: 
o spinning blob with qeff  ~ 10 ⇒ parallel connection 

(and heat pulse propagation) to the divertor plates. 
Geometry alone may not allow this large a qeff, ⇒ more 
than ∇B (neutral wind, centrifugal)? 

o non-spinning blob with qeff  ~ 5.  ⇒ parallel 
disconnection from plates due to X-point or ∇||T effects 
(and hence short-circuiting of the divertor). 

• Simulations elucidate blob dynamics: 
o Spin slows down blob vx, 
o Spinning blob can be trapped by shear flow layer. 


