
------------------------------------------------------------------------------------------------------ 

DOE-ER/54392-99; ORNL/4000158507-8  LRC-22-191 

------------------------------------------------------------------------------------------------------ 

 

LODESTAR RESEARCH CORPORATION 
5055 Chaparral Court, Ste 102 

Boulder, Colorado 80301 

 

 

 

 

Validity condition for the local sheath impedance boundary 

condition and a non-local generalization 
 

 

 

J. R. Myra1 and H. Kohno2  
 

1Lodestar Research Corporation, Boulder, Colorado 80301, USA 
2Kyushu Institute of Technology, Kawazu, Iizuka, Fukuoka 820-8502, Japan 

 
 

 

 

September 2022 

(revised January 2023) 

 

accepted for publication in  

AIP Conference Proceedings: 

24th Topical Conference on Radio-frequency Power in Plasmas 

Annapolis, Maryland (USA), Sept. 26-28, 2022 

 

 

 

 

 

 

 

 



24th Topical Conference on Radio-frequency Power in Plasmas 

Annapolis, Maryland (USA), Sept. 26-28, 2022 

 

 

1 

 

 

Validity Condition for the Local Sheath Impedance 

Boundary Condition and a Non-local Generalization 

J. R. Myra1, a) and H. Kohno2, b)
 

1Lodestar Research Corporation, 5055 Chaparral Ct, Ste 102, Boulder, Colorado, 80301, USA  

 2Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan 

 
a) Corresponding author: jrmyra@lodestar.com 

b) kohno@phys.kyutech.ac.jp 

 

Abstract. ICRF sheaths can cause unwanted interactions of high-power RF waves with material surfaces in magnetic fusion 

devices. In previous work, a local RF sheath impedance boundary condition (BC) was derived for use in ICRF codes 

together with a microscale (i.e., Debye or sheath width scale) model for obtaining the sheath impedance used in that BC. 

This local RF sheath BC matches the normal component of current and electrostatic potential across the sheath-plasma 

interface. Collapsing the matching conditions at the sheath-plasma interface to a BC depends on the assumption of scale 

separation, which can be violated when conditions along the local radius of curvature of the surface vary sufficiently 

rapidly.  The validity condition is explored in this contribution, with special attention to the case where the magnetic field 

approaches being tangent to the surface. When the local sheath BC no longer applies, a non-local sheath BC is developed 

under the assumption of a more relaxed scale separation assumption. It is shown that the non-local sheath BC reduces to 

the previous local sheath BC under appropriate conditions.  A surface-integrated sheath admittance parameter [H. Kohno 

and J. R. Myra, this conference] describes the 2D physics in the new BC. 

INTRODUCTION 

It is widely accepted that under unfavorable circumstances ion cyclotron range of frequency (ICRF) sheaths can 

cause unwanted interactions of high-power RF waves with material surfaces in magnetic fusion devices. The physics 

and consequences of RF sheaths are reviewed in Ref. 1, experimental results and progress in modeling ICRF-edge 

plasma interactions are discussed in Refs. 2 - 4. 

In previous work,1,5 a local RF sheath impedance boundary condition (BC) was derived for use in ICRF codes 

together with a microscale (i.e., ion sound radius and Debye or sheath width scale m) model6 for obtaining the sheath 

impedance used in that BC. This local RF sheath BC matches the normal component of RF current (including both 

particle and displacement currents) and electrostatic potential across the sheath-plasma interface. 

The interaction of RF waves in the quasi-neutral plasma volume with this local sheath BC was studied in a series 

of papers using the rfSOL code.7,8 In the limit of asymptotically large RF sheath voltages the local RF sheath BC 

usually reduces to a quasi-insulating limit,1,8 often referred to as the “wide sheath” limit9 which has been explored in 

Europe using the SSWICH code.3,4,9,10 In the US, in addition to rfSOL, the local RF sheath BC has been implemented 

in several other modeling codes including Petra-M,11 Vorpal,12 Stix13 and COMSOL.14 

All of these models are based on a fundamental assumption: collapsing the matching conditions at the sheath-

plasma interface to a BC depends on the assumption of scale separation, m << rf, where rf is the scale of the RF 

waves and of surface variations. Scale separation can be violated when surface variations have radii of curvature Rc ~ 

m as is currently being studied in a two-dimensional microscale sheath model.15 Additionally, we show in this 

contribution that the validity condition for the local sheath BC breaks down for much larger Rc near points where the 

magnetic field is tangent to the surface.   

The properties of sheaths on curved surfaces also arises in the interpretation of Langmuir probe data. A body of 

work in this area, mostly for static sheaths, has considered, in particular, modeling the effective collecting area of 
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probes in magnetized plasmas since this area may not correspond to the geometrical probe area due to ion finite Larmor 

radius effects. The reader is referred to Refs. 16 -18 and references therein. In high voltage RF sheaths, the thermal 

ion Larmor radius tends to be less important than the Larmor radius based on Te through the sound speed and the one 

based on the RF potential energy eVrf; this physics is captured by the fluid modeling cited previously. 

Near magnetic tangency points, when the local BC no longer applies, a non-local sheath BC is developed in the 

following under the assumption of a more relaxed scale separation assumption. It is shown that the non-local sheath 

BC reduces to the previous local sheath BC under appropriate conditions. The results from a 2D microscale sheath 

model15 may then enter the new boundary condition in the form of a surface-integrated admittance. In this paper only 

isolated tangency points on a gently curved surface are considered; we do not treat higher-dimensionality situations 

where the magnetic field is tangent to a surface along a line or an area. It remains to be seen whether the latter situations 

are realistic in practice given surface irregularities and magnetic curvature. 

THE LOCAL SHEATH BC AND ITS VALIDITY 

The local RF sheath BC takes the form 

 
t t sh n(z J )= E  (1) 

where Et and Jn = Jn represent tangential and normal RF field quantities on the plasma side of the sheath-plasma 

interface, n is the unit vector normal to the surface pointing into the plasma and the sheath impedance parameter zsh 

is obtained from a 1D microscale sheath model. Scale separation allows the macroscale RF wave problem to be solved 

for Et and Jn knowing only zsh at the interface. Scale separation also allows the microscale sheath problem to be solved 

for zsh in a 1D model knowing only values of the sheath potential sh or Jn at the interface, i.e., the RF current or 

voltage driving the sheath, or some combination of them.  

In the following discussion we will frequently use the term ‘sheath surface’ to mean the sheath-plasma interface.  

On the microscale this surface corresponds to the plasma-facing boundary of the magnetic presheath, since the 

impedance zsh measures the voltage drop between that location and the wall. On the macroscale, the sheath surface is 

for all practical purposes just the material surface. 

If the tangential gradient along the sheath surface, or the normal component of the current Jn varies rapidly along 

the sheath surface, on a scale comparable to the sheath width, the 1D sheath model, and indeed the entire concept of 

a local BC no longer apply. Here the total sheath width is roughly m ~  + s where   de(eVrf/Te)
3/4   is the width 

of a Child-Langmuir non-neutral sheath and s ~ cs/i is the magnetic presheath width. The 1D condition can be 

violated if the sheath surface is sharply curved, with radius of curvature of order m.  It can also be violated for much 

larger radii of curvature near magnetic tangency points, which is the primary focus of this paper.  To see this, consider 

the incident wave current 
 

 
n n 0 0 n || ||J i D i i b E= −  = −      −  n E  (2) 

where in the last step we use bn = bn, E|| = Eb and approximate  

 
|| O( )⊥   + bb . (3) 

At a magnetic tangency point where bn = 0, Jn is reduced by a factor of order ⊥E⊥E ~ ⊥k⊥k compared to 

its value when bn ~ 1. Here the estimate is made for an electrostatic slow wave.  As an example, for a case with density 

well above the lower hybrid resonance density one obtains the reduction factor ⊥k⊥k ~ (me/mi)
1/2. The inclusion 

of fast waves and electromagnetic effects may change this rough estimate; however, it is sufficient to illustrate the 

source of the difficulty.  For a magnetic tangency point on a surface of radius of curvature Rc, we have bn = 0 at the 

tangency point and for the example bn ~ (me/mi)1/2 at a distance Lc ~ Rc (me/mi)1/2 from the tangency point as 

measured along the surface. Lc is the characteristic parallel scale length of Jn over which it changes by order unity.  If 

Lc ~ m or less, the local sheath BC model is violated because the scales parallel and perpendicular to the wall (and 

to B) are comparable.  See Fig. 1. For this example, bn ~ (me/mi)1/2 ~ c where c is the critical angle depicted in the 

figure. 

Including densities near or below lower hybrid resonance, a critical radius of curvature may be estimated as Rcrit 

~ m(||/⊥)1/2 such that the local sheath model is expected to be valid only when Rc > Rcrit. Figure 2 presents Rcrit as 
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a function of density for some illustrative tokamak edge parameters.  It is seen that a wide range of values are possible, 

and also that Rcrit becomes very large near the lower hybrid resonance density. If instead of considering the condition 

arising from the incident wave current, one considers the total current arising from both the incident and sheath-

reflected waves, it can be shown that the sheath impedance enters the necessary criterion for validity, and that Rcrit/m 

is again typically much larger than unity.  These estimates are rough a-priori estimates of necessary (but not obviously 

sufficient) conditions for validity of the local sheath model; better estimates will have to await a numerical comparison 

of the local sheath model with the implementation of more advanced models such as the non-local model developed 

here. Also, some effects not treated in the previous 1D microscale sheath model5,6 may be present even when Rc > 

Rcrit. 

It is not yet fully explored how violation of the local BC at isolated points affects quantities of important practical 

interest, such as the flux of impurity sputtering or RF power deposition.  However, previous investigations found that 

rapid and likely unphysical fine scale oscillations occur near tangency points.19 The goal of this contribution is to seek 

a physical means of generalizing the local RF sheath BC to avoid such problems. 

When the local model no longer applies, in general one must solve a 2D or 3D problem in which there is no scale 

separation between the RF wavelength and the sheath width, m ~ rf.  The nonlinear, non-neutral sheath physics must 

be treated in the same domain and with the same (unified) model that solves for the global electromagnetic RF 

wavefields. This may be impractical, and motivates the search for an intermediate ordering in which the microscale 

and macroscale problems may still be separated, by giving up on the ideal of a local BC. In this situation, RF currents 

can flow along the surface coupling different points on the sheath surface, hence the non-locality. 

Let  represent distance measured along the sheath surface and  represent the scale length along the sheath 

surface over which conditions vary. (For the geometry shown in Fig.1,  ~ Lc but we keep the notation more general.)  

The idea investigated here assumes that   m but the RF waves of importance still satisfy m << rf.  This could 

be the case if, for example, very short wavelength RF modes are strongly damped. In this situation, scale separation 

still permits the concept of a BC: one that is local on the scale rf but global on the scale of m. Formally we consider 

an intermediate scale length  along the surface satisfying 

 
m rf~        (4) 

Then we match the total sheath current and plasma current along a segment of surface of order  as opposed to 

matching the local sheath and plasma current density at every point.  As will be seen, this results in an integral sheath 

BC. 

 

FIGURE 1. Geometry of a magnetic tangency point 

on a surface of radius of curvature Rc for the 

example case discussed in the text. 

 

 

 

FIGURE 2. The critical radii of curvature Rcrit for B = 1 T and 

10 T, using deuterium,  = 3i, Vrf = 200 V and 

Te = 20 eV.
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DERIVATION OF THE INTEGRAL SHEATH BC 

For simplicity of presentation, we consider a 2D problem, homogeneous in a third dimension, so that the sheath 

surface is a line in the 2D plane of the problem.  The results are easily generalized to 3D. The total plasma current 

(i.e., current from the plasma side of the interface) along a segment of surface is then 

 
pl n,plI d J



=   (5) 

where the integration is over a region of order  and integration over a unit length in the third dimension is implied, 

so that Ipl has units of current.  Note that the  integration smooths out the small scales of order  where the 

problematic variations discussed in Eqs. (2) and (3) arise. 

On the sheath side, the sheath current is formally 

 
sh n,sh sh shI d J Y



=   −   . (6) 

The final part of Eq. (6) defines a ‘global’ sheath admittance,15 i.e., global for the microscale problem.  (The minus 

sign arises because the sheath admittance Ysh is defined to be positive when in-phase current flows from the potential 

at the sheath entrance sh to the grounded wall. Recall that n is the unit normal pointing from the surface into the 

plasma.) Ysh (uppercase Y) is dimensionally a true admittance (in SI units of Siemens).  The local admittance 

parameter ysh or ysh
1D (lowercase y), introduced in the 1D microscale modeling5 and used here subsequently, is 

correctly named a specific admittance given in units of S/m2. Matching Ipl = Ish and pl = sh results in 

 
pl sh n,plZ d J



− =   (7) 

where the global sheath impedance is Zsh = 1/Ysh. Taking the tangential gradient of Eq. (7) assuming the that sheath 

field is electrostatic, (m  c/) 

 t t sh n,plZ d J


 
=   

 
E . (8) 

This is the desired integral sheath BC once we make the definitions of the integration and of Zsh or Ysh more 

precise.  Note that the present model is constructed to handle tangency points on a smooth but curved surface; 

therefore, although Jn can vary rapidly for reasons already explained, Et itself is by construction guaranteed to be 

smooth on the scale of . Eq. (8) is rewritten as 

 
sh n,pl

( ) sh n,pl
t t t

n,sh
n,sh

( )

( ) d J ( )
d w( , )J ( )

( )
d w( , )J ( )

d J ( )

 

 

 
                 = − → −

            
 
 

E
 (9) 

where w is a weight-function kernel, with scale length , for example 

 
2 2( ) /(2 )w( , ) e

− −   = . (10) 

For numerical implementation, other choices for w(, ) may be more convenient, for example the ‘boxcar’ function 

w(, ) = H(−+)−H(−−) where H is the Heaviside step function. 

To evaluate the denominator, consider a localized sheath variation on the scale  embedded in a larger region of 

order . In the vicinity of strong surface variation, taken to be near  = 0 for this part of the calculation, a 2D solution 

of the microscale sheath problem is required. Far away from  = 0 the 1D sheath model is adequate. 

 
2D 2D 1D

n,sh n,sh n,sh n,shJ J J J= =  +  (11) 

where 

 
2D 2D 1D
n,sh n,sh n,shJ J J = −  (12) 
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and Jn,sh
2D is only significant near  = 0.  Substituting Eq. (11) into Eq. (9) and dividing numerator and denominator 

of Eq. (9) by sh yields 

 
2 2

n,pl
t t

/2 1D
sh sh

d w( , )J ( )
( )

Y e d w( , )y ( )− 

        = 
    +     

E  (13) 

where 

 2D
sh n,sh

sh

1
Y d J ( )  = −   


 (14) 

 
2 2/(2 )w( ,0) e−  =  (15) 

 

 

1D
n,sh1D 1D

n,sh sh
sh sh

J ( )1
d w( , )J ( ) d w( , ) d w( , )y ( )

( ) ( )


              = −      

   
. (16) 

 

In obtaining these expressions use has been made of the ordering in Eq. (4). Specifically, in the Ysh integral, w() 

may be evaluated at  = 0 for the reasons stated above, i.e. that  << . In the ysh
1D term we can equate sh()  

sh() inside the integral because sh = pl is supposed to vary on a scale rf that is large compared with  

 

CONCLUSION 

Eq. (13) is the integral sheath BC. Generalizing slightly to account for multiple tangency points at locations k 

along the sheath surface (as opposed to just one such point at  = 0 in the previous section) we may write the BC as 

 ( )t t sh plZ I= E  (17) 

where Et and Ipl are evaluated on the plasma side of the sheath-plasma interface, and where 

 pl n,plI ( ) d w( , )J ( )   =      (18) 

 1D
sh,k k sh

ksh

1
Y w( , ) d w( , )y ( )

Z ( )
  =    +     


. (19) 

Here, k are the tangency points, i.e., the points where the 2D sheath theory should be applied. In Eq. (19), Ysh,k is 

given by Eq. (14) together with the solution of the global admittance from the 2D sheath problem,15 and Ysh,k is 

independent of  

In the case where there are no tangency points, we may take  to be small compared with  which would then be 

of order rf, i.e., m   <<  ~ rf. Then w() is proportional to a -function. For Eq. (10), w() → 

(2)1/2( −), we may drop the Ysh,k term and the integral BC reduces to the previous local sheath BC, Eq. (1), 

with zsh = 1/ysh
1D. 

In many situations, the scale lengths m and rf may be disparate giving some latitude in the choice of . In 

practice, it is likely that the scale of  would be chosen as slightly larger than the smallest scale length that can be 

resolved in the RF code. Then the integrals appearing in the BC would involve only a few nearest neighbor cells in 

the macroscale code. In effect, the proposed new BC smooths the local current density thereby eliminating problematic 

tangency points. It also adds a correction, Ysh,k, that arises from RF sheath effects that are intrinsically 2D. It may 

be possible that the 2D effects from Ysh,k could be evaluated and tabulated for a few generic geometric situations of 

interest, such as tangency point interactions for various radii of curvature or interactions near the corner of a limiter. 

The assumption that the scale of the RF wavefields, rf can be large compared with the scale of surface variations 

  ̧is both the weakness and strength of the proposed method.  It is likely that wavelengths of order rf incident on 

the surface will indeed generate some wave response on the  scale.  The approach relies on the assumption, to be 
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tested, that the  scale waves so generated will not significantly affect the self-consistent global wave solution. This 

amounts to an insensitivity of the solution to the parameter  

Thus, although the present approach makes some asymptotic orderings that may sometimes be difficult to satisfy 

in practice, it is hoped that even in marginal cases the approach will provide a practical and physically motivated, if 

not fully rigorous, means of dealing with tangency points in the sheath BC for RF simulations. 
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