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A tutorial on radio frequency sheath physics for magnetically 
confined fusion devices  

 

 

J. R. Myra† 

Lodestar Research Corporation, 5055 Chaparral Ct., Suite 102, Boulder, Colorado, 80301 USA 

Abstract 

Radio frequency (RF) sheaths occur under a wide variety of conditions when RF waves, 

material surfaces and plasma coexist. RF sheaths are of special importance in describing the 

interaction of ion cyclotron range of frequency (ICRF) waves with the boundary plasma in 

tokamaks, stellarators and other magnetic confinement devices.  In this article the basic physics of 

RF sheaths is discussed in the context of magnetic fusion research. Techniques for modeling RF 

sheaths, their interaction with RF wave fields and the resulting consequences are highlighted. The 

article is intended as a guide for the early-career ICRF researcher, but it may equally well serve to 

provide an overview of basic RF sheath concepts and modeling directions for any interested fusion 

scientist. 
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1. Introduction 

1.1 Motivation 

In order for magnetically confined plasmas to reach fusion power producing conditions, 

some form of auxiliary heating will be required.  Furthermore, even under fusion burn conditions, 

external systems may likely be required to control the plasma and current profiles. While many 

different auxiliary heating and control schemes are available for present day devices, not all 

schemes extrapolate easily to the high density, high magnetic field devices that are envisioned for 

a fusion reactor.  In some cases, advances in engineering such as increased energy for neutral 

beams or high frequency sources for electron cyclotron heating, are leading to practical solutions.  

On the other hand, the cost-effective technology for sources in the ion cyclotron range of 

frequencies (ICRF) in reactor relevant devices is already available.  Furthermore, the flexibility 

and efficiency of ICRF heating schemes and its availability for other applications including current 

drive, sawtooth stabilization and even wall conditioning among others is notable. One of the 

challenges for employing ICRF power in present day and future devices lies in the interaction of 

the waves with the plasma boundary, vessel walls and other material surfaces.  The reason is not 

difficult to understand intuitively.  The wavelength of ICRF waves, typically in the frequency 

range of 30 – 100 MHz, is long compared with the wavelength of lower hybrid or electron 

cyclotron frequency waves. ICRF wavelengths can approach or even exceed wall-to-edge plasma 

dimensions in the boundary region. As a result, ICRF waves can intuitively be expected to spread 

throughout the device and interact with the device walls, especially if the central plasma absorption 

is weak.  Even without such ‘far-field’ effects, ICRF waves can interact strongly with launching 

structures in the near-field since ICRF launchers must be placed in sufficiently high-density plasma 

for good coupling whereas higher frequency waves can propagate through a low-density scrape-

off layer plasma or even through a vacuum region. 

1.2 Historical background and context 

An RF sheath is a narrow region surrounding a material surface, where a non-neutral 

plasma and large amplitude RF wave fields coexist. The RF sheath width, typically on the order 

of 10 or more Debye lengths in extent, is small compared to the plasma radius. A sheath may be 

considered an RF sheath when the RF waves are of sufficient amplitude to control the properties 

of the sheath itself; namely; the RF waves give rise to sheath voltages which exceed the thermal 

sheath voltage.  RF sheaths have been implicated in ICRF boundary plasma - material surface 

interactions for some time. Various aspects of ICRF boundary plasma interactions from an 

experimental viewpoint are reviewed in [Noterdaeme 1993] and early attempts at theory and 

modeling are briefly reviewed in [Myra 2006].  The main experimental signatures of these 
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interactions were: (i) the release of impurities by RF enhanced sputtering from surfaces, and (ii) 

parasitic power loss, i.e., wave power was not efficiently reaching the core, but rather appeared to 

be lost in the edge. We will see that RF sheaths provide a natural explanation for both phenomena. 

Long before RF sheaths became of interest in fusion plasmas, they were studied in small 

scale plasma discharge devices. The important process of voltage rectification by an RF sheath 

was recognized in [Butler 1963].  Modeling of rectification is of great interest for fusion plasmas 

and will be discussed in detail in several subsequent sections of this tutorial.  It is the process by 

which the sheath generates a DC voltage from an oscillating RF voltage. The resulting DC voltage 

drop between the plasma and the wall accelerates positively charged ions into the wall at high 

energy. This in turn results in greatly enhanced sputtering of wall materials (impurities) into the 

plasma.1 

As the ICRF fusion community began to recognize the importance of RF sheath 

rectification, numerical models were developed using one-dimensional fluid and Vlasov models 

[Perkins 1989; Chodura 1989; Brambilla 1990; Myra 1990]. Early zero-point models of impurity 

sputtering based on these considerations were also developed [D’Ippolito 1991] and applied to 

describe ICRF impurity release in experiments on JET [Bures 1991]. In some of those experiments, 

it was argued that the conditions for a self-sputtering avalanche may have occurred: the 

acceleration of an impurity ion in the sheath gave it an energy at which more than one impurity 

ion was sputtered from the surface and returned to it to re-sputter resulting in a positive feedback 

loop. 

Strong ICRF interactions with the antenna and other surfaces were frequently observed in 

almost all experiments employing ICRF heating.   Infrared camera images provided detailed maps 

of the ‘hot spots’ on the antenna and surrounding structures where high temperatures were 

measured resulting in surface damage such as the flaking of coatings. [Colas 2003] A particularly 

illuminating example from Tore Supra is shown in figure 1.  

Excessive power reaching various surfaces surrounding an antenna can increase the heat 

flux on those surfaces to the point where material damage occurs. The most affected surfaces may 

be the ones exposed to the highest combination of RF power and plasma density.  It was found in 

the experiments on Tore Supra and in other experiments on JET that a related consequence of RF 

rectification is the formation of RF-induced convective cells [D’Ippolito 1993; Becoulet 2002; 

Colas 2007].  RF driven convection from EB drift occurs when DC (RF rectified) potentials vary 

from one magnetic field line to the next.  They will be discussed in more detail in section 6.  RF 

 
1 The acceleration of ions across the sheath and the resulting enhancement of sputtering applies to so-called 

‘collisionless sheaths.’  See also footnote 2 at the end of this subsection. 
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driven convection can increase or decrease the plasma density and hence the power deposition at 

a surface depending on its flow direction. 

 

 

Fig. 1. Infrared (IR) image of a Tore Supra ICRF antenna powered at 3 MW, showing high 
temperature ‘hot spots’ resulting in flaking of the B4C coating. Reprinted by permission from 
figure 6(a) of [Corre 2012]. 

 

There are many more examples of important fusion-relevant experiments and modeling, 

some of which will be referenced later in this article.  The few mentioned here should be sufficient 

to motivate the topic of RF sheaths. 

Before moving on, it is well to note that RF sheaths are of practical interest in other 

contemporary applications besides ICRF heating or current-drive in fusion plasmas. A companion 

body of research on RF sheaths may be found in the plasma processing literature.  Some examples 

are the capacitive sheath studies in [Lieberman 1998] and [Godyak 1990].  Additional material 

may also be found in [Gekelman 2009; Jaeger 1995] and in the review of capacitively coupled 

plasmas in [Donko 2012].  References relevant to model specific issues will be given later.  

While RF sheath physics in plasma processing devices shares some important 

fundamentals with RF sheaths in fusion plasmas, there are also some important distinctions.  The 

first and foremost is probably the presence of a strong magnetic field in the fusion case and the 

common occurrence of magnetic field lines that are incident obliquely on a surface. Magnetic 

fields are used in plasma processing devices as well, but much of the literature that deals with RF 

sheaths is for semi-conductor etching applications where the magnetic field is either absent or is 

normal to the surface. As we will see, in that case it has little effect on the sheath dynamics. 

Additionally, other relevant parameters such as plasma density, temperature and RF frequency 
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may be in different regimes in the two cases. RF discharge plasma devices are usually smaller in 

size than plasma fusion devices. Consequently, the former are almost always concerned with near-

field RF interactions. In contrast, surface interactions with propagating waves are also of interest 

in tokamaks and other large-scale devices. Finally, neutral-plasma interactions and plasma 

chemistry are frequently important if not the primary goal in plasma processing applications.  This 

physics can be important in fusion plasmas as well when impurity or fueling modeling is sought, 

but such considerations are not of prime relevance to the structure of the RF sheath itself.2 Perhaps 

the most significant difference between the two fields is in the modeling outputs that are of interest. 

In both applications, RF sheath rectification and power dissipation may be of interest. However, 

in fusion devices, the reaction of the RF wave fields that created the sheath on the sheath itself is 

of importance since it may determine the fraction of RF power that ultimately makes it into the 

core for its intended purpose and the remaining power that ends up damaging material surfaces. 

Another field of study which has some overlap with the present tutorial is that of probes. 

[Demidov 2002; Hutchinson 2005; Shun’ko 2009] Probes are often employed to measure plasma 

properties in magnetic fusion devices and an understanding of probe sheaths is critical to 

interpretation of the data they produce.  An applied probe voltage can be swept with respect to the 

plasma potential to measure the current-voltage characteristic from which it is possible to extract 

the plasma density and temperature. If the sweeping frequency is sufficiently low compared with 

a characteristic sheath frequency (usually the ion plasma frequency), the sheaths are of the static 

variety; however, at high sweeping frequencies RF effects may become important. Furthermore, 

probes are sometimes employed in RF heated plasmas, when RF sheaths on the probe itself become 

quite relevant. Probe theory is complicated by the fact that probes are designed to be un-perturbing 

to the plasma under measurement and are therefore as small as practical. This introduces 

geometrical complications in modeling having to do with their effective collection area. 

1.3 Scope and plan of the paper 

For all of the reasons discussed in the previous section, and to limit this article to a 

manageable length, its scope will be restricted to the realm of RF (and primarily ICRF) sheaths in 

fusion devices. Unless otherwise indicated, ‘sheath’ will refer to an RF sheath. Except for 

occasional motivational references to experimental results, the article will also be restricted to 

 
2 The most commonly encountered RF sheaths are in the ‘collisionless sheath’ limit where by definition ion collisions 

with neutrals within the sheath itself are negligible. The ‘collisional sheath’ limit may be relevant in the divertor, 

especially under detached or near-detached conditions, and possibly also at other location in the SOL when there is 

strong gas puffing. In this case the structure of the sheath is modified. Collisions alter the ion dynamics in the sheath, 

slowing them down, thus suppressing the increase in sputtering and narrowing the sheath itself. Collisional sheaths 

will not be considered further in this tutorial under the assumption that RF wavefields do not dominate the sheaths at 

these collisional locations. However, an exception may arise when active gas puffing near an ICRF antenna is 

employed to increase the local plasma density and improve coupling.  
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theory and modeling. Even with these limitations, there is a large body of published work.  It is 

not the intention of this paper to review that work, but rather to cite just enough in the way of 

pertinent examples to provide the interested reader with some additional resources. 

The plan of the paper is as follows.  It begins in section 2 with introductory material, first 

for static sheaths without and with an oblique magnetic field and then for biased and capacitive 

RF sheaths.  In section 3 a rough classification of the types of RF sheaths that occur in fusion 

experiments is given, based on how they are driven and whether they are magnetically connected 

to an active antenna.   

Section 4 discusses microscale modeling of RF sheaths. The separation of sheath concepts 

into microscale and macroscale is possible (and necessary) because of the disparity in length scales 

between sheath parameters, e.g., the Debye length d = (0Te/nee2)1/2 or sheath width  (see 

equation (2.7)) and device parameters or wavelength, e.g., the ion skin depth i, = c/pi as 

illustrated in figure 2 (a). This leads to the sheath boundary condition discussed in section 5 and 

macroscale modeling of RF sheaths using that boundary condition in section 6. These sections are 

the heart of the article. In particular, sections 4.1, 5.1 and 6.1 to 6.5 discuss essential aspects and 

implications of the theory. Together, they describe how it is possible to take advantage of scale 

separation between the small spatial scales characterizing the sheath itself (i.e., the Debye length, 

electron gyroradius  e = vte/e and ion sound radius s = cs/i) and the much longer scales typical 

of RF wavelengths. ranging roughly from e = c/pe to  i, and that of the whole device. The 

domains and interactions of the microscale and macroscale are illustrated schematically in figure 3.  

The goal of microscale modeling is to calculate an effective surface impedance for the RF 

waves, RF sheath power dissipation, and the rectified sheath potential. The macroscale and 

microscale are coupled because the RF sheath properties on the microscale depend on the RF wave 

amplitude at the sheath interface, determined by the macroscale model.  On the other hand, the 

macroscale modeling depends on the sheath properties which set an effective boundary condition 

for the waves. On the macroscale the goal is to understand how the presence of an RF sheath 

modifies the wave, e.g., through reflection or absorption at the sheath interface, and how it 

modifies the plasma, e.g., as we will see, through the sheath-mediated generation of DC potentials 

that extend into the bulk plasma. This and several additional macroscale-related topics are 

discussed in section 6 followed by a concluding section 7. Tables of notations and acronyms are 

given in the appendices. 
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Fig. 2. (a) Characteristic length scales and (b) dimensionless sheath parameters for a range of 
densities that might be encountered in fusion devices. See Appendix A for definitions. The 
importance of these characteristic scales and dimensionless parameters will become apparent 
later in the paper. In (a) the results for s and e are shown by the semi-transparent colors for 
magnetic fields between B = 1 T and 5 T.  In (b) the Maxwell Boltzmann ratio, MB = (bnvte), is 
shown at B = 5 T for normal incidence (solid) and for 3 grazing incidence (dashed). Further 
discussion of the MB ratio is given in section 4.3.2. Fixed parameters for this figure are  = 2i, 
Te = 20 eV, sh = 300 V, deuterium plasma and here i pi pi

ˆ ˆ/ , / =    =   . 

 

Fig. 3. Schematic diagram showing interaction of microscale and macroscale sheath physics. The 
thick green arrow signifies the mutual coupling between these two scales. 
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2. Basic concepts 

2.1 Static sheaths 

Before proceeding to the main topic of RF sheaths, it is useful to briefly review the basic 

concepts governing static sheaths, since many of these concepts carry forward. The discussion that 

follows is elementary but sufficient for present purposes. 

2.1.1 Basic perpendicular sheaths 

When a plasma contacts a conducting wall, the thermal motion of the electrons and ions 

will cause those particles to impact the wall, resulting in plasma loss.   Because electrons have 

larger speeds, they are initially lost more rapidly. This causes the plasma to develop a net positive 

potential with respect to the wall, of order a few times the electron temperature Te. The potential 

confines most of the electrons, i.e., those in the bulk of the distribution, by reflecting them back 

into the plasma.  Furthermore, the electrical conductivity of plasma (in the absence of a magnetic 

field or parallel to it) is very good, so the electric field parallel to the background magnetic field 

in the plasma must be small, and hence the potential gradient required to confine the electrons 

cannot appear in the bulk plasma; instead, it is concentrated within a few Debye lengths d of the 

wall where large electric fields are allowed because quasi-neutrality is broken as shown in figure 

4. In this Debye sheath layer electrons are largely excluded, having been reflected by the potential, 

and net positive ion charge supports the electric field. Plasma continues to flow to the wall but is 

limited by the speed at which ions can be removed. According to the Bohm sheath criterion 

[Stangeby 2000], this speed must be at least the sound speed cs = (Te/mi)
1/2 where mi is the ion 

mass. (For simplicity, a cold ion, isothermal electron model is considered here.3 Thermal and 

kinetic ion effects will be discussed briefly in section 4.3.1.) 

A source is required to sustain the plasma. Generally, the flow velocity of plasma at the 

source will be smaller than cs. A weak potential drop, about 0.7 Te develops over long scales in 

this source presheath region [Tonks & Langmuir 1929] to accelerate ions to the Bohm velocity cs 

at the entrance to the non-neutral sheath.4 Since RF sheaths will typically be associated with much 

larger changes in potential, the source presheath region will not be of great concern in this paper.  

 
3 More generally, the warm ion sound speed csi = [(Te+Ti)/mi]

1/2 would be relevant here. It arises because the mass 

flow is driven by the total (electron plus ion) pressure gradient. As discussed in [Stangeby 2000] the Bohm condition 

is (i) a singularity of the quasi-neutral fluid equations, and (ii) required for a monotonic sheath potential. 
4 Note that the source presheath potential drop, i.e., the change in e, based on energetic considerations should be of 

order mics
2 ~ Te if the source velocity is small. The quasi-neutral plasma can sustain this acceleration and potential 

drop until the fluid singularity at the sound speed is reached. 
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Fig. 4. Schematic diagram illustrating the fundamental structure of a static unmagnetized sheath. 

 

The discussion just given is a greatly oversimplified description of the static sheath in an 

unmagnetized plasma.  It also applies to a static sheath when the magnetic field is parallel or anti-

parallel to the surface normal, i.e., perpendicular to the surface. (Caution: some authors refer to 

this geometry as parallel sheath geometry; however, in this paper the opposite convention is 

followed, denoting it as perpendicular geometry.) Thus, the term ‘unmagnetized sheath’ applies 

both to perpendicular magnetic field geometry as well as to the case when there is no magnetic 

field. The features just described are illustrated schematically in figure 4. The reader is referred to 

[Stangeby 2000] for a more comprehensive treatment of static sheaths in magnetic fusion devices 

and also to [Hershkowitz 2005] for an introduction to electron rich sheaths, probes, double layers, 

collisions and multiple ion species effects. 

2.1.2 Biased sheaths 

The preceding remarks apply to static sheaths that do not draw any net current or have any 

external voltage bias applied to them.  If there is an applied potential difference between the plasma 

and the wall, the sheath must expand thereby accommodating more charge to support the potential 

difference. It will be seen later that RF fields naturally apply a positive voltage to the plasma with 

respect to the wall.   Here, consider a positively applied DC bias to a perpendicular static sheath. 

Employing the cold ion model, at the entrance to the non-neutral sheath where the Bohm 

condition is met and the quasi-neutral density is n0, the ion flux is n0cs. The electron flux is 

obtained from the velocity moment of a Maxwellian retaining only those electrons in the tail of 

the distribution that have enough energy to escape the potential barrier presented by the sheath. 

The result is  
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where 0 is the potential at the sheath entrance and v0 is the electron escape velocity at the 

upstream location, defined by mev0
2/2  e( − w). If the conducting wall is grounded, w = 0, 

and connected to an external circuit, in general a current density J will flow into the wall 
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This is the textbook current-voltage characteristic for a sheath.  The zero current condition results 

in 0 = (Te/e) ln  where  = vte/[(2)1/2cs] = [mi/(2me)]1/2 = 24.17 for deuterium and ln  = 

3.18. A plot of normalized current vs. voltage is shown in figure 5. 

 

 

 

Fig. 5. The current-voltage relation, equation (2.2) for a deuterium plasma (solid blue). The gray 
shaded area indicates the ranges of currents and voltages that would be sampled for a sinusoidal 
voltage oscillation of amplitude 2 about the zero-current point at e0/Te = 3.18.  In this case net 

negative current would flow.  This point will be returned to in section 2.2. 

 

The internal structure of the non-neutral sheath is determined from Poisson’s equation 

combined with a model for the electron and ion densities. Since the ions are the species flowing to 

the wall, the fluid model is the simplest, whereas the electrons, being the reflected species, may be 

taken as Maxwell-Boltzmann.  The resulting equations in the sheath region are 
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where the x coordinate is normal to the wall, the magnetic field is zero or in the ex direction and it 

is assumed that there are no particle sources in the sheath region.  

From equation (2.5), integrating from the sheath entrance, ni = n0cs/ux and from equation 

(2.6) ux
2 = cs

2 + 2Ze(0−)/mi. The function ni() so obtained, ni() = n0cs/[cs
2 + 2Ze(0−) 

/mi]
1/2 and ne() from equation (2.4) may be substituted into equation (2.3) to obtain a nonlinear 

equation for the structure of the potential in the sheath.  For present purposes, an estimate of the 

sheath width will suffice.  For a strongly biased sheath, i.e., e0/Te >> 3.18, the electron density 

in the sheath is nearly zero.  From the preceding, the ion speed is of order ux ~ (2Ze0/mi)
1/2 and 

thus the ion density scales as ni ~ n0cs[mi/(2Ze0)]1/2 in the large 0 limit.  The sheath width is 

therefore estimated from equation (2.3) by balancing the left-hand-side, 0/2, with the right-

hand-side, Zeni, to obtain  ~ [0/(Zeni)]
1/2 or, neglecting the order unity factor (2/Z)1/4 
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e
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T
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 (2.7) 

where the reference (sheath entrance) Debye length is d0 = [0Te/(n0e2)]1/2.  Equation (2.7) is the 

well-known Child-Langmuir scaling. The sheath width will play an important role for RF sheath 

capacitive effects introduced in section 2.2. 

2.1.3 Magnetized oblique sheaths 

When a background magnetic field B exists and makes an oblique angle with the surface, 

the Lorentz u  B force is no longer negligible in the sheath dynamics. Its effect will depend on 

the ordering of scale lengths perpendicular to B. The most frequently encountered ordering in 

fusion plasmas, and the one considered in this article is e << d ~ s << L⊥ where e  = vte/e 
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and s = cs/i are the thermal electron and ion sound gyro-radii5 respectively, d is the Debye 

length, and L⊥ is a characteristic macroscopic perpendicular scale length such as provided by 

device or wall geometry or the RF perpendicular wavelength. An important dimensionless 

parameter is the ion magnetization parameter in the sheath s/d = pi/i.  Here vte = (Te/me)1/2 

is the electron thermal velocity, i = ZeB/mi and e = eB/me are the ion and electron cyclotron 

frequencies, and pi = [niZ
2e2/(mi)]

1/2 is the ion plasma frequency. Z is the ion charge and, in 

this discussion, we assume quasi-neutrality and Z = 1. See figure 2 for a comparison of some of 

these important scale lengths. 

When both electrons and ions are strongly magnetized, e << s << d << L⊥ their motion 

across the presheath and sheath regions is constrained to be parallel to the magnetic field, like 

beads on a string. The magnetic field enters only in so far as its orientation determines the 

projection of distances and velocities normal to the surface.  See figure 6 (a).  In this limit, the 

structure of the sheath is formally analogous to an unmagnetized sheath. 

In practice, the unmagnetized ion (in the sheath) regime is usually more relevant in fusion 

devices, e << d << s << L⊥. See figure 2 (a). In the plasma region upstream of the sheath, the 

Debye scale is no longer present; the electric field is weak because L⊥ is large, and therefore both 

electrons and ions are strongly magnetized, j << L⊥ (j = e, s). In the upstream region, both species 

are constrained to follow magnetic field lines.  Far upstream there is still a source presheath that 

accelerates ions from the source velocity to u = u||b = ±csb where b = B/B. See figure 6 (b).  A 

few Debye lengths from the wall, where a strong electric field exists in the non-neutral sheath 

region, the electric force ZeE dominates the magnetic force and ions are pulled across field lines 

into the wall. In the region between the non-neutral sheath and source presheath, there is a third 

region, the magnetic presheath, which has the job of accelerating ions from u|| ~ cs (at the magnetic 

presheath entrance) to un ~ cs (at the non-neutral sheath entrance) where un = un and n is the unit 

normal to the surface. This ensures that the Bohm condition, |un| ≥ cs, is met, and requires the 

establishment of a weak magnetic presheath electric field. Assuming that there are no particle 

sources in the magnetic presheath region, and noting that the ions are accelerated from un ~ cs sin 

 to un ~ cs, it follows from conservation of flux, n = niun that ni must drop as one approaches 

the non-neutral sheath entrance. The magnetic presheath is still quasi-neutral (as allowed by the 

bulk plasma equations until |un| ≥ cs).  As a result, the drop in ni also implies a corresponding drop 

in ne.  This change in density tends to broaden the width (~ d) of the non-neutral sheath, which 

will have consequences for the RF interaction. 

 
5 In a warm ion model, the warm-ion sound radius si = csi/i would replace s in these estimates.  However, in the 

cold ion model, s is physically relevant because it is the perpendicular (to B) scale on which the ions flowing at ~ 

cs execute their orbits once the flow is no longer strictly parallel. See figure 6(b). 
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Fig. 6. Schematic diagram illustrating the fundamental structure of a static magnetized sheath in 
(a) the strongly magnetized ion regime, and (b) the weakly magnetized ion regime.  In (b) the 

electrons are not shown for simplicity: they follow the same dynamics as in (a). The physics is 
unchanged if the magnetic field is anti-parallel instead of parallel to the upstream ion flow; the 
latter is always towards the surface. 

 

 

In the non-neutral sheath itself, the force on the ions from the electric field is dominant and 

therefore the sheath ions are not strongly magnetized. Specifically, estimating E ~ d ~ Te/(ed) 

and for the ions u  B ~ csB results in E/|u  B | ~ s/d >> 1 by assumption. On the other hand, 

the electrons are still strongly magnetized in the sheath: since u ~ vte, the ratio of electric to 

magnetic force for the electrons is of order e/d << 1 by assumption. 

The oblique magnetized sheath is a complicated object, only described at the most basic 

level here, concentrating on the aspects that will be most important for RF sheaths.  A more 

comprehensive treatment of magnetized sheaths has been given in [Daybelge 1981; Chodura 1982] 

and some additional subtleties are discussed in [Cohen & Ryutov 1995].  One important point is 

that standard sheath theories assume that bn is not too small; otherwise, the electrons which are 
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constrained to follow field lines, are better confined than the ions. This point will be returned to in 

section 6.9. 

Finally, it is not difficult to generalize the discussion of biased perpendicular sheaths to 

that of an oblique magnetized sheath; a detailed treatment will be deferred to the RF case. Suffice 

it to note that when a magnetized sheath is biased, most of the voltage drop must appear across the 

non-neutral sheath because extra (un-neutralized) charge is required there to balance the extra 

potential, just as in section 2.1.2. The main difference that an oblique magnetic field introduces is 

that the quasi-neutral density drops throughout the magnetic presheath. This makes the density at 

the entrance to the non-neutral sheath smaller than the upstream density, and thereby increases the 

effective Debye length and the sheath width.  

2.1.4 More sophisticated models 

Before closing this short section on static sheaths, it should be noted that many more 

sophisticated models have been developed and studied to take into account effects such as 

secondary electron emission, [Campanell & Umansky 2017; Stangeby 2000] non-Maxwellian 

electron distributions [Ou 2016], collisions [Tang 2015], ionization and kinetic ion effects 

[Khaziev & Curreli 2015] and EB and diamagnetic drifts [Cohen 1999; Stangeby 2000].  These 

are but a few of the many hundreds of papers in the literature on these and related topics. Some of 

the mentioned effects are not usually of prime importance for the RF sheaths of interest in tokamak 

heating and current-drive experiments (which is not to discount their importance for static sheaths 

in the divertor where neutral physics, grazing angle magnetic geometry and cool, dense, more 

collisional plasmas can prevail).  Other effects remain to be studied in the RF context. RF sheath 

studies for fusion research have up until recently been occupied with more fundamental (i.e., zero 

order) effects, namely those which are essential for coupling sheath physics to global RF wave 

propagation codes and impurity codes. A brief treatment of secondary electron emission is 

included in the considerations of section 6.3. 

2.2 Rectification and sheath impedance: capacitive RF sheaths 

The simplest and probably most widely studied RF sheath is the capacitive sheath. It serves 

as a good introduction to the topics of rectification and sheath impedance (or its reciprocal, sheath 

admittance) which will be treated in more detail in subsequent sections. A capacitive sheath is so 

named because the displacement current dominates the particle currents flowing across the sheath. 

It will be shown in section 4 that this limit occurs at high frequency,   pi where pi is the ion 

plasma frequency. A rough idea for the cases when this condition is fulfilled may be gleaned from 

figure 2. At the location of the antenna the RF wave frequency is usually somewhat larger than the 

local ion cyclotron frequency.  In figure 2 the value of ̂  = pi for  = 2i is shown as a function 
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of density for a high field device, B = 5 T. At low sheath entrance densities, the high frequency 

condition can be satisfied. 

Consider the case of a plasma-filled region between two parallel plates, with surface 

normal n and background magnetic field B normal to the surface as shown in figure 7(a).  Let the 

plates be driven by anti-symmetric voltages on each side, namely V1 = −rf cos t, V2 = −V1 and 

consider the plasma potential 0 in the center of the device, far away from the plates and their 

associated sheaths. This will be referred to as an anti-symmetric sheath (model). Although the DC 

voltage on both plates is zero, it can readily be seen that 0 can acquire a DC voltage much greater 

than 3.18 Te when the driving voltage rf is large.  

The electrostatic potential (x) is sketched in figure 7(b) for three different times during 

the RF cycle, t = 0, /2 and . Note the changes in potential drop across each sheath and the 

corresponding expansion and contraction of the sheath width according to the Child-Langmuir 

scaling of equation (2.7). At each instant of time, assuming a Maxwell-Boltzmann (and hence 

instantaneous) response for the electrons, (x) in the bulk plasma must remain 3.18 Te above the 

instantaneous voltage at either plate; otherwise, the electron current losses would greatly exceed 

the ion current losses and the bulk plasma could no longer remain quasi-neutral. The electric field 

in the middle of the domain is negligible compared with that in the sheaths because the plasma 

electrical conductivity along the magnetic field is very high. (Furthermore, for simplicity we 

assume in this example that no net DC current is allowed to flow from one plate to the other.)  It 

is evident that the DC or average upstream potential <0> measured in the center of the domain, 

exhibits ‘rectification’ of the applied RF voltage.  The 3.18 Te static sheath potential is still present 

and additive with the RF rectification effect.6  

Numerical simulations and analytic theory [Godyak 1990; Lieberman 1988; Myra 1990] 

show that for erf >> Te the rectified potential <0> increases approximately linearly with the RF 

voltage <0>  ~ C0 rf with C0 a constant of order 0.6; at low voltages erf << Te , of course one 

recovers the static sheath result e<0>  = Te ln  ~ 3.18 Te. These behaviors are illustrated in 

figure 8. 

 
6 One can view the rectification effect as resulting from the fact that RF fields can push electrons into the wall, but 

cannot pull them out.  In fact, secondary electron emission can effectively pull some electrons from the wall and this 

does reduce the plasma potential. See section 6.3. 
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Fig. 7. (a) Geometry of a double plate capacitive sheath model with anti-symmetric RF voltage 
source. (b) Sketch of the corresponding potential in the plasma at three different times in the RF 

cycle (c) Sketch of the RF potentials near the left plate with zero potential at the plate. Here, the 
illustration corresponds to the average  model for sheath capacitance.  

 

Voltage rectification occurs in this example partly because the net DC current is 

constrained to be zero. Another way of understanding rectification is by referring to figure 5. It 

can be seen that, for a single-ended sheath, the zero-current condition (equal positive and negative 

shaded areas) would require the voltage oscillation to be centered at a higher value than the 3.18 

Te value illustrated in the figure.  Conversely, if the external circuit prevents voltage rectification, 

the asymmetry of the current-voltage relation leads to current rectification as illustrated by the net 

negative shaded area in figure 5. 
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The capacitive property of the sheath has not yet played a significant role in the discussion. 

In fact, the cartoon sketches in figure 7 would not be different if the plates were statically biased. 

The capacitive property enters when the sheath impedance is considered.  The sheath impedance 

is a convenient way to characterize how the presence of the sheath affects RF wave fields that are 

in contact with the sheath surface. A more sophisticated calculation of the sheath impedance will 

be discussed in section 4; here, a semi-heuristic intuitive approach is given for the high-frequency 

capacitive limit. 

 

 

Fig. 8. Typical variation of the DC plasma potential in a deuterium plasma as the driving RF plasma 
potential is changed. 

 

In practice the sheath width is almost always very small compared with characteristic scales 

along the surface (geometric, RF wavelengths and the vacuum wavelength c/). This makes the 

sheath problem one dimensional (1-D) with the electric field normal to the surface Ex a function 

of x (locally on the scale of the sheath) and therefore electrostatic, Ex(x) = 0. In electrostatic 

theory one can add an arbitrary time dependent but spatially constant function to the potential 

without changing the physical observables.  To analyze the impedance, it is simplest to consider 

the sheath on the left of figure 7 with the potential shifted so that the wall is at ground and the 

applied oscillation is in the bulk upstream plasma, as if supplied by an RF wave. The corresponding 

potential for three different RF phases, t = 0, /2 and  are sketched in figure 7(c).  

Electrons are mostly excluded from the non-neutral sheath, 0 < x < , having been reflected 

by the sheath potential.  Ions are present, but in the high frequency limit,   pi, inertia prevents 

them from responding directly to the RF wave. (In the literature, this high frequency limit is 

sometimes referred to as the ‘immobile’ ion limit where the immobility applies at the RF 

frequency.) As a result, as far as the RF waves are concerned, the sheath behaves like a vacuum 
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gap of average width , where  is determined from the rectified potential by equation (2.7).7 

Within this simple model, the effect of the sheath on the RF wave fields may be determined by 

matching the RF fields across this narrow vacuum layer before applying the usual conducting wall 

boundary condition at the actual plate location. [D’Ippolito 2006]   

The matching condition at the sheath-plasma interface is the continuity of the surface 

normal component n of displacement D =   E where   is the relative permittivity tensor of the 

plasma or vacuum region.  For the ‘perpendicular’ sheath problem considered at present, this 

reduces to the matching condition Ex,vac = x,pl where ‘vac’ indicates the vacuum gap (sheath) 

region and ‘pl’ is the plasma region (at the sheath entrance). See figure 7(c). Since || = |1 − 

pe
2/2| >> 1 is large in the ICRF frequency regime, this results in very large electric fields in the 

sheath region, Ex,vac = −/x. In this simple model, since the vacuum layer is uniform,  varies 

linearly from zero at the conducting wall to a finite value at the vacuum- (i.e., sheath-) plasma 

interface.  The RF sheath voltage at the interface is therefore 

 sh || n,plE = −   (2.8) 

where n is the direction of the outward surface normal (ex at the left plate). Furthermore, along the 

vacuum-plasma interface of the sheath, the RF tangential electric field Et must be the negative 

tangential gradient of the RF sheath potential.  The sheath boundary condition, may therefore be 

expressed as the continuity of Et, i.e.  

 t,pl t || n,pl( E )=   E  (2.9) 

Equation (2.9) expresses the capacitive sheath boundary condition (BC) for a perpendicular sheath 

entirely in terms of RF field quantities on the plasma side of the sheath, as required for a BC. 

Finally, the right-hand-side of equation (2.8) is proportional to the plasma current density 

Jn = ||En where || = −i.  Here and throughout whenever complex notation is employed, the 

exp(−it) phase convention is assumed. Consequently equation (2.8) takes the form 

 sh sh nz J = −  (2.10) 

 sh
0

i i
z

C


= 

 
 (2.11) 

 
7 In actuality, as illustrated in figure 7(b), the sheath width varies during the RF cycle depending on the voltage drop 

across the sheath.  Using the average sheath width as determined from the DC potential in the sheath capacitance 

calculation is reasonable for the sheath response at the fundamental frequency . The time variation of  generates 

harmonics in the sheath response [Lieberman 1988] which are outside the scope of consideration here. 
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where zsh, being the ratio of a voltage and a current per unit area is identified as the sheath 

impedance parameter. (Note the minus sign: the impedance is calculated from the drop in voltage 

in the direction of the current, Jn.) Its reciprocal ysh = 1/zsh is the sheath admittance per unit area. 

In the final form of equation (2.11), C = 0/ is the sheath capacitance per unit area.  

Equation (2.10) suggests a general way of expressing the sheath BC.  First, from a 

general microscale model of the sheath, the RF current passing through the sheath Jn (retaining 

electron, ion and displacement currents) is determined in terms of the voltage across the sheath 

sh. This defines the sheath impedance zsh. Then the corresponding BC for a sheath on a 

perfectly conducting surface is given by 

 t t sh n(z J )= E  (2.12) 

where here and in future discussions of the sheath BC, the subscript ‘pl’ is dropped:  all RF field 

quantities in the sheath BC are assumed to be evaluated on the (upstream) plasma side of the 

sheath.  The evaluations of zsh, sh and the use of the sheath BC in more general settings are the 

subject of sections 4, 5 and 6. 

3. RF sheath classification in fusion devices 

The particular geometry, hardware (i.e., launchers, limiters, and device walls) and wave 

scenarios encountered in fusion devices allow various types of RF sheaths to exist. Here the 

discussion is mainly written with ICRF sheaths in mind, since experimental observations in the 

ICRF regime motivate the classification.  Furthermore, unless otherwise stated, ‘sheath’ should be 

assumed to refer to an RF sheath.  

RF sheaths in fusion devices differ by their location, magnetic connection (or not) to an 

antenna or launcher, whether they are driven by near fields or propagating waves, and if the latter, 

the polarization of those waves.  These considerations are at least conceptually separate from the 

dimensionless parameters that characterize the physical regime of the sheath, to be introduced in 

equation (4.11), although in practice they may be linked. In the following subsections, some 

commonly encountered types of sheaths are described with the goal of providing real-world 

context for the more physics-based discussions of sheath models which follow. The rough 

categorization of sheaths into these distinct types is conceptually useful to illustrate different 

mechanisms, which is not to say that the mechanisms are mutually exclusive. 

3.1 Near-field antenna sheaths 

When a magnetic field line makes a connection between two points on the surface of an 

antenna or its nearby hardware, high-voltage sheaths can form, which are driven directly by the 

applied RF voltages and currents and their near fields. An example is illustrated in figure 9 (a). 
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Contact points on the Faraday screen bars, side limiters and septa often result in magnetic 

connections subject to high RF driving voltages associated with the encircled RF magnetic flux 

[Bures 1991]. As a rough order of magnitude estimate, the sheath voltage sh can be as large as a 

fraction f of the top-to-bottom antenna voltage sh = f Vant where f = Lc/La is given by the ratio 

of poloidal distance subtended by the field line between contact points, Lc, and the top-to-bottom 

poloidal antenna dimension, La. See figure 9.  

 

 

Fig. 9. (a) Sketch of near-field antenna sheath geometry showing a magnetic field line (solid 
green), its contact points and the flux loop path completed through the antenna frame (dashed 

green). 0 and  indicate relative phasing of the antenna strap currents. Solid black dots and 
crosses indicate the direction (respectively out of and into the page) of the RF magnetic field.  For 
a symmetric sheath in dipole phasing (antenna strap currents shown with red arrows) there is RF 
magnetic flux cancellation and no induced voltage between symmetrical contact points. In 
monopole phasing (0-0, not illustrated) the voltages can be very large. The poloidal distances La 
and Lc mentioned in the text are shown at left. (b) Photograph of one of the ICRF antennas from 
the Tore Supra device. This particular antenna features cantilevered bars, a central septum and 

a slotted box. Reprinted by permission from figure 2(b) of [Corre 2012]. 

 

The actual sheath voltage depends on many design factors (as well as plasma factors 

discussed in the rest of this paper) and considerable effort has been made in the RF fusion 

community to mitigate sheath interactions by careful antenna engineering and operation.  A 

complete discussion of these techniques is beyond the scope of this paper.  Suffice it to say that 

important considerations are: antenna phasing [D’Ippolito 1991, Bures 1992] and relative 

powering of different straps [Bobkov 2016, 2017] in multi-strap designs; orientation of the antenna 

with respect to the direction of the magnetic field [Wukitch 2013]; control of induced currents in 

the antenna frame and side-walls [Bobkov 2013], the reduction of RF electric fields parallel to B 

La
Lc
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[Tierens 2017] and the use of insulating coatings [Majeski 1994]. The physics of the latter is 

discussed in section 6.9.  The other strategies involve RF engineering issues best addressed with 

electromagnetic simulation codes.  Work is ongoing to implement a sheath BC into these codes to 

allow for a self-consistent response of the RF simulations to the sheath, and to provide a predictive 

capability for the sheath voltages and the resulting plasma-material interactions such as sputtering. 

3.2 Magnetically-connected far-field sheaths 

A second type of sheath occurs when a magnetic field line on a surface far away from the 

antenna is magnetically connected to a point on the antenna. The far surface could be a distant 

limiter, divertor structure, the inner wall or another piece of hardware intruding into the scrape-off 

layer (SOL). In this case the magnetic connection to the antenna can be important for both the RF 

and DC potentials that appear at the remote location. RF waves excited at the antenna that 

propagate mostly along the magnetic field can generate a far-field RF sheath on the remote surface. 

For ICRF waves, [Stix 1992] the slow wave (SW) fits into that category and also has the correct 

polarization (section 3.4) for a strong RF sheath interaction. An example of a magnetically 

connected sheath is illustrated in figure 10(b) which shows a curved model antenna at right that 

magnetically connects to the vessel wall at bottom.  This figure shows filled contours of E|| which 

is a proxy for the SW.  Note that the SW generated at the antenna propagates along the magnetic 

field, i.e., along the flux surfaces in this R-Z plane cut of the torus. 

Although modern antennas for fusion research devices are almost always designed to 

launch the fast wave (FW) some parasitic coupling to the SW is unavoidable.  The SW is associated 

with parallel currents and electric fields, and can be minimized by aligning active current elements 

in the antenna structure to be perpendicular to the background magnetic field as explored 

experimentally in Alcator C-Mod. [Wukitch 2013] Here and throughout this paper ‘parallel’ 

without other qualifiers means parallel to the background magnetic field. 

In a magnetically-connected propagating slow wave scenario, the RF wave at the remote 

surface will generate a local rectified (DC) sheath potential [Myra 2008], analogous to the 

mechanism discussed in section 2. But there are other factors which influence the DC sheath 

potential. In particular, if there is good DC electrical conductivity between the antenna sheath 

contact point and the magnetically connected far-field sheath, the antenna sheath which is 

generally stronger may dominate the DC sheath potential at the remote location. [Lu 2018; Myra 

2020] Also, to the extent permitted by finite DC resistivity, a DC potential difference may be 

established between the antenna sheath and the far-field sheath governed in part by the DC plasma 

current which will flow between these two surfaces.  DC currents associated with applied ICRF 

power have been observed in many experiments [Van Nieuwenhove 1992; Bobkov 2017; Perkins 

2017; Perkins 2019; Myra 2020]. DC current flow will be discussed in more detail in section 6.6. 
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This type of situation is often referred to as an asymmetric RF sheath, in contrast to the anti-

symmetric model illustrated in figure 7. 

From the microscopic point of view, both situations may be analyzed in the framework of 

a local RF sheath model, as discussed in section 4, but one in which there may be an ‘external’ DC 

current flow and an ‘external’ DC voltage bias.  The macroscopic problem (section 6) has the task 

of relating sheaths, DC potentials and RF waves at various locations in the device to each other in 

a self-consistent way. 

3.3 Not-magnetically-connected far-field sheaths 

A third type of sheath is the not-magnetically-connected far-field sheath. This type of 

sheath occurs when a propagating wave strikes a remote surface that is not magnetically connected 

to an antenna or other active RF source. The distinction from the magnetically-connected far-field 

sheath is particularly clear for ICRF waves because SW propagation is nearly along the magnetic 

field while FW propagation is to a much greater extent directed across the magnetic field.  Thus, 

not-magnetically-connected far-field ICRF sheaths are usually associated with a FW impinging on 

a wall or other surface.  This could happen in two ways: (i) when FW antennas drive coaxial modes 

[Messiaen 2020] i.e., surface waves and/or waves between the edge plasma and vessel wall, that 

propagate in the SOL around the torus poloidally (and toroidally), or (ii) when the central 

absorption of the FW is poor so that ‘shine-through’ illuminates the inner wall or other surface.   

An example of the latter case is illustrated in figure 10. Figure 10 (a) shows filled contours 

of E⊥ which, in the central plasma, is a proxy for the FW fields. FWs which are not absorbed in 

the core strike a limiter protrusion on the inner wall, at far left in the figure. At locations where the 

limiter surface is not coincident with a flux surface, i.e., where |bn| ≠ 2, the boundary conditions 

at the surface in general require both FW and SW components. Figure 10 (c) shows filled contours 

of E|| near the “corner” of the limiter protrusion.  At this location FW-SW coupling occurs and an 

RF sheath forms. The physics of this is discussed in section 3.4. 

Usually there will be a FW cutoff on the high-field side of the torus beyond which the FW 

is evanescent. Thus, in the case of (ii) the distance between the cutoff and the wall in comparison 

with the evanescent decay length determines the strength of the FW-wall interaction.  The 

evanescent decay length decreases with the FW parallel wavenumber, k||, therefore the interaction 

is strongest for low k|| waves. Not-magnetically connected sheaths have been documented in 

several experiments.  [Ochoukov 2014; Perkins 2012]  
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Fig. 10. Far-field sheath simulation results in the R-Z plane (shown here as x-y) of a tokamak in a 
model geometry: (a) filled contours of Re(E⊥) showing unabsorbed fast waves striking the high-
field-side wall; (b) filled contours of Re(E||); and (c) an expanded view of Re(E||) near a limiter 
protrusion on the high-field side. The light-colored concentric circles are magnetic flux surfaces 
and the thick black curved structure at right is a model antenna. The high-field side (HFS) of the 
torus is at left. Reprinted by permission from figure 3 of [Kohno 2016]. 
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3.4 Wave polarization: fast and slow wave interactions 

For ICRF wave interactions, strong, i.e., high voltage, RF sheaths are usually associated 

with the presence of the slow wave.  A heuristic way of understanding this is evident from equation 

(2.8) for perpendicular capacitive sheaths, which states that sh || n,plE = −  .  Even for rather 

low-density edge plasmas, the parallel dielectric, 2 2
|| pe1 / 1 = −    , is rather large.  For 

example, at 50 MHz and a density of only 1017 m-3 we find || = −2. The large value of || 

compensates for the inevitably small value of sheath width  and makes a large sheath voltage 

sh possible. The appearance of || in the expression for sheath voltage is directly associated with 

the presence of E|| and the SW polarization. 

More generally, the RF sheath voltage is given by equation (2.10), sh sh nz J = − .  The 

normal component of the RF current is 

 n 0J i= −    n E  (3.1) 

where  is the dielectric tensor, given in cold fluid theory by [Stix 1992] 

 ||I ( ) i I⊥ ⊥  =  +  −  +  bb b  (3.2) 

where I   is the unit tensor,  2 2 2
pi i1 / ( )⊥ = +   −  , 2 2

|| pe1 / = −   and 2
pi / =  

2 2
i i( )  −  . It can be seen that unless E has a parallel component, || does not enter; instead, 

only the much smaller components ⊥ and  enter, and the resulting sheath voltage tends to be 

small.  

Except under special circumstances, any boundary condition will tend to couple various 

components of the electric field at the boundary.  In general, it is not possible to satisfy a BC on 

the RF electric field E unless both FW and SW components are present.  The sheath BC has this 

property of coupling the FW and SW, but in fact so does the perfectly conducting wall BC.  The 

conducting wall limit will be used next to provide an example of how the SW can be generated at 

a boundary from a pure FW. 

The geometry of the interaction is illustrated in figure 11. When the magnetic field is 

oriented obliquely with respect to the surface, it is apparent that the FW and SW are coupled by 

the BC.  The FW electric field is (almost entirely) perpendicular to the background magnetic field 

B, but in order to make the tangential field Et zero on the surface, and hence the total field E = 

E⊥+ E|| purely normal to the surface, a finite E|| is necessary.  This implies a finite amplitude of 

the SW. Thus, a pure incoming FW will, in general, generate a SW and an E|| by its interaction 

with the boundary.  In two special cases the FW does not couple to a SW. If the magnetic field is 

‘perpendicular’ to the surface, i.e., |bn| = 1 an E|| is allowed but is not needed.  In this case a pure 

FW will simply arrange its phase such that Et is zero on the surface, i.e., the surface is a node of 
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the oscillations. The second case is when the magnetic field is tangent to the surface, bn = 0.  Then 

E|| is not required from consideration of the geometry.  However, the case bn = 0 is singular from 

the point of view of sheath theory, since electrons (ions) at a greater distance than e (i) from the 

wall cannot escape the plasma, at least not without invoking cross-field transport. See section 6.9.2. 

Although the preceding example is for the perfectly conducting wall BC, the conclusion 

about boundary conditions coupling the FW and SW polarizations holds in general (non-

pathological) cases. A more rigorous treatment is given in section (6.4). 

 

Fig. 11. Geometry of an oblique magnetic field RF interaction with a surface for which the 
perfectly conducting BC, Et = 0 has been applied. The FW electric field is polarized in the 
direction of E⊥. In order to satisfy the BC, an E|| and hence a SW must be generated at the 
surface. 

4. Microscale RF sheath model 

As discussed in the introduction, and summarized in figure 3, microscale models deal with 

the physics that occurs in the sheath itself, on the scale of a few Debye lengths for the non-neutral 

sheath, and on the s scale for the neutral magnetic presheath.  The role of the microscale model 

is to input plasma density, temperature and DC current, magnetic field, geometric and RF 

parameters at the sheath-plasma interface (strictly speaking, at the entrance to the magnetic 

presheath) and from them calculate the DC plasma potential (i.e., RF rectification) and the RF 

surface impedance that the sheath presents to the RF wave fields in the bulk plasma. These output 

quantities are also computed at the sheath-plasma interface. 

One can envision here a hierarchy of physical models capable of connecting the previously 

mentioned inputs and outputs.  They may differ in the plasma description (fluid vs kinetic) and 

geometry (single ended vs. double plate RF excitation) or in other ways.  The fluid model discussed 

first will provide a concrete example.  Kinetic models currently under use will also be mentioned.  

Other models and embellishments are discussed at the end of this section. 

B

E⊥

||E

n ||E E E⊥= +
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4.1 RF sheaths in the nonlinear fluid (NoFlu) model 

The capacitive sheath model introduced in section 2.2 is often a reasonable model for a 

low-density RF sheath satisfying  > pi. It has been widely used in both the plasma processing 

and fusion communities. In the present section we consider the next level of sophistication by 

considering not only the displacement current flowing through the sheath, but also the particle 

currents.  This requires a dynamical plasma model, provided here by the cold ion fluid equations 

and a Maxwell-Boltzmann model for the electrons. This model will be referred to as the ‘NoFlu’ 

or ‘nonlinear fluid’ model.  It is a time-dependent generalization of equations (2.3) – (2.6). The 

NoFlu model uses the same double plate geometry as the capacitive sheath model, but with 

additional parameters. Labels and other, now relevant, details are shown in figure 12. 

4.1.1 Dimensionless variables and model equations 

It is convenient to convert to dimensionless variables that are natural for this model: space 

scales normalized to the Debye length d, time scales to the inverse ion plasma frequency 1/pi, 

the electrostatic potential to Te/e, and currents to the ion saturation current ni0ecs. Here we restrict 

the discussion to singly charged ions and throughout this paper temperatures are expressed in units 

of energy.  The ion velocity u is normalized to the cold-ion sound speed cs. The quantity ni0 is the 

ion (or electron) density at the (quasi-neutral) entrance to the magnetic presheath, i.e., at the center 

of the domain x = L in figure 12. Normalizing density to the density at the sheath entrance ni0, the 

equations of the model are 

 )nn(
x

ei2

2

−−=



 (4.1) 

 e 0n exp( )=  −   (4.2) 

 ( ) 0un
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
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


 (4.3) 

 xu
t x

  
+ = − +   

  
u u b  (4.4) 

where x is the spatial coordinate perpendicular to the plate, (x,t) is the electrostatic potential, 

ni(x,t) and ne(x,t) are the electron and ion densities, (t) = (L,t) is the central (upstream) 

potential. As before, b is the unit vector in the direction of the background magnetic field, and  

is the dimensionless ion cyclotron frequency, parametrizing the degree of ion magnetization in the 

sheath. 
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Fig. 12. Anti-symmetrically driven double plate RF sheath model. Plasma fills the interior region. 
The conducting plates are DC grounded and the RF voltage is driven  out of phase on each plate 
with normalized amplitude .  Particle and current sources are located at the midplane x = L. 
Reprinted by permission from figure 1 of [Myra 2021]. 

 

The model has localized delta-function particle and current sources at the midplane x = L. 

These are implemented through the boundary conditions and constraints as follows: 

 
1

2

(x ) cos t

(x ) cos t

 =  

 = − 
 (4.5) 

 in (L) 1=  (4.6) 

 
0

0

(L )

(L )

−

+

=

= −

u u

u u
 (4.7) 

where L− (L+) signifies the value just to the left (right) of x = L. 

 

 

The current conservation condition (Jd+Ji+Je) = 0 provides an equation that determines 

0(t). [Recall that the continuity equation for each species (j = i, e) gives jt + Jj = 0 and that 
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the time derivative of the total charge t is, from the time derivative of Poisson’s equation, just 

Jd where Jd = 0Et.] The current at the left plate is given by 

 x1 x 1 i1 x1 x 1 0 x t 1J (x , t) n u b exp( )=  = +   −  −   e J  (4.8) 

where subscript 1 indicates evaluation at x = x1. Here we expect ux1 < 0 in the ion term (the first 

term), and the electron (i.e., second) term is in analogy to equation (2.2) where  is defined by 

 

1/2

te i
1/2

es

v m

2 m(2 ) c

 
 = =  

  
 (4.9) 

By the symmetry of the problem, at the right plate x2 x1J ( t) J ( t ) = −  +  .  The current 

conservation condition then becomes 

 x1 x2 dc xJ J 2J b− = −  (4.10) 

where Jdc is the dimensionless injected DC current. Equation (4.10) determines 0(t). 

To complete the specification of the model, u0 must be given. A suitable choice is to take 

u0 = u||0b where |u||0| ≥ cs, typically u||0/cs= −1.0 or in [Myra 2017] u||0/cs= −1.1 Results of interest 

are not very sensitive to these choices.  The model is also well-posed for |u||0| < cs but in that case 

a source-related presheath will form as reviewed in section 2.1. This presheath, not to be confused 

with the magnetic presheath (see figure 6 (b)), is unrelated to the RF quantities of interest. It is best 

not modeled here because in a real plasma the presheath would extend over global scale lengths 

while we wish to model a sheath BC to be applied within a few s or d lengths from the surface. 

All of the output quantities of interest are functions of five dimensionless input parameters 

of the model: 

 dci rf
x dc

pi pi e i0 s

Jeˆ ˆˆ , , b , , J
T n ec

 
 =  = =   = =

 
n b  (4.11) 

together with the auxiliary parameters  = [mi/(2me)]1/2 and u||0/cs. In particular, the rectified 

voltage and sheath impedance are given by 

 dc x dc 0
ˆ ˆˆ( , ,b , , J )    =   (4.12) 

 
x1 1 x1 1

sh x dc 2 2
sh 1 1

ˆ ˆJ i J d / dt1 ˆ ˆˆŷ ( , , b , , J )
ẑ (d / dt)

  
=    = −

 
 (4.13) 

or equivalently 
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x1 x1

sh

ˆ ˆ2 J cos 2i J sin
ŷ

 
= +

 
 (4.14) 

where,  = t, the bracket notation <…> = d(2) is used to indicate an average over a 

complete RF cycle and for extra clarity where confusion might occur the circumflex notation 

(super ^) is temporarily introduced to denote dimensionless variables. Equation (4.13) shows that 

the complex admittance is just the Fourier projection at frequency  of the current flowing through 

the sheath for a given RF voltage drop across the sheath. 

Numerical methods for solving the NoFlu model will not be discussed here in any detail 

except to mention two general approaches. The most direct approach is to integrate forward in 

time from an arbitrary initial condition, and continue time-stepping until the system relaxes to an 

approximately periodic state with period 2/.  Standard numerical techniques for computational 

fluid dynamics, such as upwind differencing or implicit time-stepping may be required for 

numerical stability. A second technique is to discretize in both space and time, where the time 

discretization is over just one RF period and time periodicity is directly imposed. This converts 

equations (4.1) – (4.10) to a nonlinear algebraic system which can be solved by vector root-finding 

methods. Symmetries can be exploited, so that the spatial discretization need only take place on 

x1 = 0 < x < L [Myra 2015] reducing the computational size of the problem. 

Sample results from NoFlu are shown in figure 13 for an oblique magnetized case.  The 

parameters are  =   = 0.25 corresponding to the 2nd ion cyclotron harmonic at the antenna 

location, bx = 0.3 or  = arccos(bx) = 73, i.e., close to grazing, for a high voltage sheath  = 10 

with no DC current Jdc = 0, u = −1.1 and  = 24.17 (deuterium).   This figure illustrates several 

important features of an oblique RF sheath.  The left panels show potential, species density and 

ion velocity components at the time in the RF cycle when the sheath voltage drop is largest, i.e., 

when the left wall is the most negatively biased. From part (b) the non-neutral sheath where ni > 

ne is seen to extend out to about 16 (d0) from the wall, and most of the potential drop occurs in 

this region.  Although both ux and u|| in part (c) accelerate towards the wall, ux overtakes u|| as the 

sheath electric field begins to dominate over the magnetic forces in the non-neutral sheath. A quasi-

neutral magnetic presheath exists in the region x > 16. In this region there is a small potential 

gradient (barely visible in the plot) which accelerates the ion velocity component ux to values close 

to the sound speed. The electrons are Maxwell-Boltzmann, therefore the magnetic presheath 

potential drop moving from upstream towards the wall causes an exponentially stronger drop in ne 

and therefore in ni. As a result, ni is reduced at the non-neutral sheath entrance. This affects the 

sheath width (increasing it because of the increase in the local Debye length) and other sheath 

dynamics. 
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The panels at right in figure 13 show some time histories during an RF cycle.  Part (d) 

illustrates the space-time structure of the electrostatic potential.  Note the sinusoidal drive at the 

wall and the second harmonic at the upstream locations, to be discussed further in section 4.2.   The 

waveforms of the currents at the wall are shown in part (e). The exponential form of the electron 

response gives the electron current a very non-linear (i.e., non-sinusoidal) waveform, which also 

couples to the other components of the current.  In this case all the currents are roughly comparable 

in size, and each contributes to the total current and to the admittance.   

 

 

Fig. 13. Sample results for an RF sheath with dimensionless parameters  =   = 0.25, bx = 
0.3,  = 10, Jdc = 0 and auxiliary parameters u = -1.1,  = 24.17 (deuterium). Left panels show 
the spatial structure of (a) the potential, (b) the ion and electron densities and (c) the ion velocity 

parallel to b and perpendicular to the plate, all at the time in the RF cycle when the sheath voltage 
drop is largest.  Right panels show (d) the space-time structure of the potential, and (e) the time 
history of the current waveforms at the plate. All quantities are shown in normalized variables. 
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The total DC potential drop across the sheath (i.e., the upstream potential) is 9.19 (Te/e), 

of which ln  = 3.19 is from the thermal contribution.  The remaining 6.00 (Te/e) is about 0.6 of 

the zero-to-peak potential , a fraction which is typical.  The total complex admittance parameter 

y = 0.0705 −0.077 i. Most of Re(y) is from electrons with Re(ye) = 0.05 and most of Im(y) is from 

Im(yd) = −0.07. The ions contribute a smaller but not insignificant amount with yi = 0.03 + 0.02 i.  

This distribution of admittance among the components is also typical, with ye gaining in 

importance at low frequencies, and yd gaining at high frequencies.  The ions seem never to 

dominate and contribute their maximum for  ~ 1. 

4.1.2 Semi-analytical limits 

In most cases, numerical methods are required to obtain a solution to the nonlinear fluid 

equations for the sheath problem.  However, in the spirit of providing some concrete examples, a 

few semi-analytical results are presented next.  

One limiting case is the capacitive sheath limit for high frequency sheaths, already treated 

heuristically in section 2.2. Here we recover it from the mathematics.  In the high frequency 

limit,   pi, the ion inertia is sufficiently large that the ions are unable to respond on the RF 

timescale. Mathematically, the /t operator in equations (4.3) and (4.4) is formally large and may 

be annihilated by time-averaging over an RF cycle. This gives conservation of particle flux from 

equation (4.3) and conservation of energy from equation (4.4), where the ion velocity u is 

determined by the DC field <>.  Then conservation of flux gives ni = <ni> and the ion response 

is just as it would be for a biased static sheath with the same DC potential; see equation (2.6) and 

containing paragraph. For the perpendicular (i.e., bx = 1) sheath 2 2
x1 x0 0(u u ) / 2− =   since <> 

= 0. In the large RF amplitude limit,  1/2
x1 0u (2 )=  and the continuity equation gives the scaling 

of ni in the sheath as ni ~ 1/(2<0>)1/2. Even with this simplification, the system is not analytically 

tractable. However, just as in the static biased sheath, electrons are almost completely excluded 

from the non-neutral sheath region, and as a result the non-neutral sheath width  follows the 

Child-Langmuir scaling of equation (2.7) obtained from Poisson’s equation by neglecting ne. The 

admittance is dominated by the displacement current Jdx1 = −2xt which is out of phase with 

   cos , therefore equation (4.14) recovers the capacitive result shŷ i / −    in agreement 

with equation (2.11).  

Moving away from the capacitive regime, as the RF frequency decreases, the ions begin to 

respond to the applied RF voltage, but the temporal variations at frequency  of ni and u, in the 

following denoted by in  and u , are sufficiently small that they may be obtained from a 

linearization of equations (4.3) and (4.4).  The resulting RF ion current is then given by 

i i in n= +J u u  where the overbar is a short-hand notation for the RF cycle average <…> and for 

any quantity Q, Q Q Q= + . When the frequency is still high enough that the convective terms may 



   
 

34 

 

be dropped, i.e.,    it can be shown that i in nu u  and i inJ u  [Myra 2017] where from 

equation (4.4) u  is given by 

 
1

x xM

M i I I

−= −   

= −  +  

u e

b

 (4.15) 

The matrix M  is proportional to the familiar cold fluid ion conductivity, and as such has a 

resonance at the ion cyclotron frequency  = .  After some algebra 

 
2 2 2

x
x 2 2

i( b )
u

x( )

−  −  
=

  − 
 (4.16) 

and therefore, the ion admittance in this limit is 

 
2 2 2

ix i x i x
i 2 2

J n u in ( b ) 1
y

x( )

−  −  
= = =

     − 
 (4.17) 

where x/  − and in , the ion mean ion density in the sheath, should be calculated using a 

DC sheath model with the appropriate DC bias potential and magnetic presheath density drop. 

Details are given in [Myra 2017]. The important point is that this limit provides an analytical result 

for the ion admittance which, together with other analytical results, are useful in constructing 

parameterizations and Padè fits for the general case discussed subsequently. In order of magnitude, 

since in < 1, equation (4.17) gives yi < i/() except near cyclotron resonance. Comparing with 

yd ~ −i and noting that the preceding estimates are valid for  > 1, it follows that except at 

cyclotron resonance, yi < yd. Numerical results confirm that the ion admittance is usually a 

relatively small contributor to the total sheath admittance. 

As final analytical examples, consider the rectification and electron admittance in the low 

frequency limit  << 1. At low frequencies, the displacement current may be neglected simplifying 

the application of equations (4.8) and (4.10).  Consider here the case Jdc = 0. For the double plate 

model, from equations (4.5) - (4.10), the current conservation condition gives Jx1 = Jx2 

 i1 x1 x 0 i1 x1 x 0n u b exp( cos ) n u b exp( cos )+    −  = − −  −  −   (4.18) 

where  = t.  Solving for 0 one obtains 

 x
0

i1 x1

b cosh( cos )
ln ln[ cosh( cos )]

n u

   
 = =    

− 
 (4.19) 

To obtain the final form in equation (4.19) the low frequency limit of the ion continuity equation 

(4.3) has been used to show that ni1ux1 = ni0ux0 = ux0 = −bx in our normalized variables, since the 
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upstream BC on the left half domain is that ux0 = bxu||0 and u||0  −1 is directed towards the plate 

at the sound speed.  The rectification effect is then obtained from the RF cycle average 

 

2

0

0

d
ln ln[cosh( cos )]

2




 =  +  
  (4.20) 

where the ln  term is the thermal sheath potential, and the remaining integral may be computed 

numerically as a function of .  In the large  >> 1 asymptotic limit, it can be shown that <0> ~ 

2  0.64  

The electron admittance ye is obtained similarly in this limit from Je1 given by equation 

(4.8) and the definition of ye in equation (4.14). Thus, we find 

 0
x1 cosx

e

ˆ2 J cos 2 b
y cos e

 −
 

= = 
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 (4.21) 

This may be further simplified using equation (4.19) 

 x
e 2 cos

4b cos
y

1 e−  


=

 +
 (4.22) 

which shows that the electron admittance decreases as the magnetic field becomes more tangent 

to the surface: electrons which are constrained to follow field lines have a reduced projection of 

current normal to the surface. The electron admittance is also small at high RF voltage because the 

Maxwell-Boltzmann response is strongly nonlinear, and this results in a small Fourier component 

at frequency  We will return to the topic of nonlinearity in the waveforms. 

4.1.3 Parametrizations 

A few other analytical results are possible [Myra 2017; Myra 2020] but in general the 

sheath rectification and admittance must be computed numerically, as can be done with the NoFlu 

model over the five-dimensional space indicated in equations (4.12) and (4.13). In corners of 

parameter space where asymptotic results are not available, it is usually still possible to ascertain 

the scaling of the rectification and the individual components of the admittance by heuristic and 

semi-analytical arguments. Appropriate functional forms with free parameters may then be used 

as templates for obtaining fits in the various regimes, which can be patched together with Padè-

like approximations.  The final result of this effort is described in [Myra 2017] for the case Jdc = 

0, and generalized to arbitrary Jdc in [Myra 2021]. 

The parametrizations for <0> and ysh are expressed in terms of analytical functions which 

have been coded in the Python and Mathematica languages.  The fidelity of the parametrizations 
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has been tested against NoFlu computations for many hundreds of representative points spanning 

the input parameter space. It is found in most cases that the parametrized fits achieve better than 

10% accuracy with respect to NoFlu, and capture correct qualitative trends in all cases checked so 

far.  Further improvements in accuracy are not strongly motivated since the sheath models 

themselves are unlikely to describe real-world experimental sheaths at a greater level of fidelity 

than the parametrized fits. The results for ysh are suitable for providing a sheath BC for global RF 

codes, as described in section 5 and the resulting <0> values may be used to model impurity 

sputtering and other surface interactions. 

An illustration of the variation of zsh = 1/ysh  ẑ with frequency using the dimensionless 

parametrized fits is shown in figure 14. Starting from the small ̂  (high density) end of the plot at 

left, ye is dominant leading to a large Re( ẑ ). At ̂  = ̂  = 0.1 there is a small local increase in 

Im(z) from the ion cyclotron resonance, but the dominating electrons hide any such feature in 

ˆRe(z) . At ̂  =  (i.e., the upstream ion plasma frequency) there is a weak broadened resonance, 

damped because the ions are rapidly leaving the resonance region as they move into the wall. At 

higher frequencies, the sheath takes on a capacitive character  1/ ̂  as the displacement current 

dominates ŷ  and ẑ . The particle contributions, and in particular the electron contribution 

decreases with increasing ̂  (decreasing density). 

 

 

Fig. 14. Variation of the dimensionless sheath impedance with dimensionless wave frequency.  
Other parameters are bx = 0.2, ̂ = 0.1,  = 10 and Jdc = 0.  Some structure is seen at the ion 
plasma frequency ̂ = 1 and at the ion cyclotron frequency ̂  = ̂ = 0.1.  Reprinted by permission 
from figure 2 of [Myra 2019b]. 
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4.1.4 Dimensional (SI) units 

In SI units the surface admittance per unit area, i.e., y = the ratio of current density to 

voltage, is measured in Siemens/m2.  Therefore, the dimensionless sheath admittance parameter 

shŷ is related to the dimensional SI sheath admittance per unit area ysh by 

 

2
0 pi0 s

sh sh sh
e d

n e c
ˆ ˆy y y

T

 
= =


 (4.23) 

where recall that dimensionless current densities were normalized to n0ecs and voltages to Te/e. 

The quantity ysh, or its reciprocal zsh = 1/ysh is what is required for the RF sheath BC discussed in 

section 5. 

4.2 Harmonic generation, nonlinearity and single-ended sheath models 

We have already noted that the Maxwell-Boltzmann model for the electrons leads to 

strongly non-sinusoidal waveforms: if the sheath voltage is assumed to be sinusoidal then the 

electron current is not; as a result it generates harmonics of the fundamental RF frequency. 

Nevertheless, it is always possible to project a waveform (the current density waveform in the 

present formalism) onto the fundamental Fourier component of the applied voltage at the RF 

frequency. This procedure is appropriate for modeling which only aims to describe the behavior 

of the fundamental frequency RF wave where almost all of the power resides. The RF admittance 

obtained in this way should capture the reflection and absorption properties of the sheath correctly 

at the fundamental frequency. What is neglected is the possibility that nonlinearly generated 

harmonics could be launched from the sheath and propagate into the main plasma. Further 

investigation of the importance of this effect remains as a research topic. As a practical matter, 

present-day global RF codes are linear in the sense that they only model waves at the fundamental 

frequency .  Thus, a more general microscale sheath admittance treatment would find little 

application at present.   

The nonlinear aspects of the microscale sheath model are associated mostly with the 

electrons and their role in rectification and the electron admittance. It is important to recognize 

that the results for these quantities in section 4.1 are mildly dependent on the double-plate aspect 

of the model geometry. A related issue is that the anti-symmetric double plate model generates 

harmonics of 0 at even frequencies 2 4 6 ... as shown in figure 13 (d).  This happens 

because Maxwell-Boltzmann electrons respond instantaneously to the electrostatic potential. In 

particular, as can be seen from the derivation of equation (4.19), the instantaneous potential at both 

plates influences the central potential 0 and its time-averaged value. Somewhat different results 

would be obtained if we were to consider a single plate system driven by a specified purely 
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sinusoidal RF voltage difference between the upstream location and the plate. In this case in the 

 << 1 limit, we would have  

 x1 x x 0J b b exp( cos )= − +    −   (4.24) 

and the condition that <Jx1> = 0 would give 

 0 0ln ln[I ( )] =  +   (4.25) 

where I0 is a Bessel function and again for purpose of illustration we assume Jdc = 0. This is 

different from, but qualitatively similar to, equation (4.20).  The asymptotic limit  >> 1 in this 

single plate system is <0> ~   instead of 0.64  . Similar remarks apply to the electron 

admittance in the single plate system, which is readily shown to be given by 

 
x 1

e
0

2b I ( )
y

I ( )


=

 
 (4.26) 

This is again qualitatively similar to equation (4.22) for the double plate model, but different in 

detail. It is well to keep in mind the model dependence of the electron admittance, a dependence 

which encompasses both the geometry, the way in which the RF is excited and the validity of the 

Maxwell-Boltzmann response itself. 

The double plate model is literally applicable for anti-symmetrical near-field antenna 

sheaths such as might occur for some choices of contact points and antenna strap phasing.  It is 

also applicable in situations which are not obviously driven in an anti-symmetric way, since in the 

electrostatic model, potentials may be referenced to an arbitrary function of time. Thus, for 

example, a double plate model where one plate is grounded, 1 = 0, and the other driven at 2 = 

−2 cos t is mathematically equivalent to the anti-symmetrical case 1 =  cos t and 2 = − 

cos t by shifting the reference ground potential by gnd =  cos t.  This logic, however, assumes 

that the other conditions of the double plate model are satisfied, in particular, that the electrons are 

Maxwell-Boltzmann over the entire domain.  If the contact points are far separated, as could occur 

for magnetically-connected far-field sheaths, then collisions may isolate the sheath interactions at 

the two plates, or (SW) wave propagation may occur along the field lines, both of which are outside 

the Maxwell-Boltzmann model.  In this case, a single-ended sheath description for the electrons, 

such as in equations (4.25) or (4.26) may be more appropriate. 

The real situation may be even more complicated.  In practice, the upstream RF potential 

drop across the sheath may be neither that of the double plate model (0−), or the pure sinusoid 

plus DC value assumed in the derivation of equations (4.25) and (4.26). Instead, it may be the 

result of a self-consistent model of the entire global RF circuit, which could include contributions 
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from cross-field RF currents flowing in the bulk plasma. Nevertheless, the microscale sheath 

models are not overly dependent on such details. The ion and displacement admittances remain 

local to a single sheath; the main model differences are to be found in the rectification and electron 

sheath admittance, which as we have seen, are similar, but not identical, in the double plate and 

single-ended models. 

4.3 Kinetic effects 

Up until now the discussion of sheaths has been limited to the physics contained in the cold 

ion nonlinear fluid model NoFlu. Both static and RF sheaths have been studied with kinetic, 

primarily, particle-in-cell (PIC) models. [Gunn 1997; Jenkins 2015; Sharma 2018; Ngadjeu 2011; 

Perkins 1989; Chodura 1982; Paes 1992, Khaziev & Curreli 2015] Here, the additional physics 

provided by kinetic models is briefly summarized. 

4.3.1 Kinetic ion physics 

Kinetic ion physics brings several new features into the model. The most obvious is the 

finite Ti increase of the sound speed, cs → csi = [(Te + Ti)/mi]
1/2 which increases the ion saturation 

current lost to the wall and as a result decreases the (static) thermal sheath potential drop, ln [ → 

ln [/(1+Ti/Te)1/2 because the ion flow velocity is a little bit less disparate from the electron 

thermal speed. In a kinetic model, ions sourced with zero flow and finite Ti do not maintain a 

constant Ti as they flow to the wall; rather, there is ion acceleration cooling [Stangeby 2000, 

Khaziev & Curreli 2015].  Nevertheless, it was recently shown [Myra 2021] that for erf  > Ti the 

voltage rectification and sheath admittance calculations were practically identical over the range 

of explored parameters when results from the hPIC [Khaziev & Curreli 2018] and NoFlu codes 

were compared, if a proper normalization procedure was followed.  In particular, the ion saturation 

currents were specified to be equal in the two cases (requiring a slightly higher density in NoFlu) 

and that density was used to determine the ion plasma frequency for defining the dimensionless 

values of  and .  Although the NoFlu model is not singular at the ion cyclotron frequency  = 

, (see figure 14 and the discussion of the rapid ion loss from the system) kinetic ion effects were 

not explored at resonance for the cyclotron frequency or any of its harmonics; ion kinetics may be 

more important under such conditions. Grazing sheaths for which the magnetic field is nearly 

tangent to the surface, 2− =  < (2me/mi)
1/2 were also not explored in [Myra 2021] but some 

small  cases are examined in [Elias 2021]. Additional remarks on grazing sheaths are given in 

section 6.9.2. 

One of the main motivations for carrying out kinetic ion calculations is to determine the 

ion energy and angle distributions (IEAD) at which the ions strike the surface.  The IEAD is of 
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importance for quantifying plasma material interactions (PMI). See section 6.8 for a brief 

discussion. 

4.3.2 Kinetic electron physics 

The nominal condition for validity of the Maxwell-Boltzmann electron response is 

 x teb v   (4.27) 

This condition states that the parallel velocity of thermal electrons projected normal to the surface 

exceeds the velocity of the RF sheath front. Stated another way, the time for a thermal electron to 

cross the sheath by parallel streaming is shorter than the RF period. The ratios denoted MB = 

/vte and MBobl = /bxvte are plotted in figure 2(b) for a range of densities in a high field 

device with B = 5 T and  = 2i. It is seen that the Maxwell-Boltzmann condition is satisfied at 

high densities for field lines that are not too grazing.  In [Myra 2021] kinetic electron (and ion) 

PIC results for voltage rectification and sheath currents were compared between the Vorpal [Nieter 

2004] and NoFlu codes using a similar procedure to that described for hPIC.  A case satisfying 

equation (4.27) was considered. Kinetic electrons introduce inertia and this was found to trigger 

pe oscillations at the time in the RF cycle when the electron distribution strikes the wall.  In these 

simulations both electron cooling [Stangeby 2000] and ion cooling occur, complicating the 

comparisons.  After correcting for the different thermal sheath contributions, good agreement in 

RF voltage rectification was obtained.  Current waveforms, suitably normalized and averaged over 

the fast time scale pe oscillations also agreed.   

It remains to explore the rectification and admittance differences between Vorpal and 

NoFlu when equation (4.27) is marginal or violated. From previous studies [Lieberman & Godyak 

1998; Carter 1992] it is known that  ~ bxvte would give rise to electron heating in a process 

similar to Fermi acceleration or Landau damping, where the sheath front moves at a velocity that 

is comparable to that of the electrons.  In the extreme limit  >> bxvte , as could occur in the case 

where the magnetic field is grazing the surface, a fluid model for the RF part of the electron 

response is likely to be more appropriate than the Maxwell-Boltzmann model. The grazing case, 

however, introduces other modeling complications. See section 6.9.2. 

4.3.3 Hot electron tails 

Although not really kinetic in nature, it is worth mentioning that another generalization of 

the simple Maxwell-Boltzmann model of equation (2.4) is that of a two-temperature distribution 

 0 e1 0 e2e( )/T e( )/T
e 0 0n n e n e

− −
= +   (4.28) 
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where  is the fraction of hot electrons at the upstream location. Hot electron tails abound in 

laboratory plasmas and are likely present in the SOL of magnetic fusion devices. RF sheaths have 

been investigated using models of this type. [Ou 2019, Myra 2020] Not surprisingly when  is 

small the tenuous tail population does not have an important effect on electron density, but can 

change the electron current significantly resulting in modifications to the sheath rectification and 

admittance. The electron tail population increases the voltage rectification (as required to confine 

these electrons). 

4.4 Other considerations: additional microscale physics; validation 

In this tutorial, the intention is to cover only the most basic microscale sheath physics.  

Additional physics, often included in state-of-the-art static sheath descriptions remains to be 

studied in the context of high voltage RF sheaths for fusion devices and its importance in the latter 

context is, to best of this author’s knowledge, unknown.  The topic of Fermi acceleration has 

already been mentioned in passing. Collisions and ionization can be important for sheath physics 

when the relevant mean free paths are comparable to characteristic scale lengths. On the global 

scale these effects are frequently important in the presheath, and can have an indirect effect on RF 

sheaths. The presheath voltage drop itself is usually negligible compared with high power RF 

sheath voltages. As for the inclusion of collisions and ionization in the sheath itself, in fusion 

plasmas, the relevant mean free paths are typically far larger than the sheath widths except perhaps 

for high voltage sheaths in the divertor region of a detached plasma (low Te, weakly ionized) at 

near atmospheric neutral pressure or near an antenna where strong neutral gas puffing is employed. 

Likely more important, and still needing investigation, are the behavior of RF sheaths with 

an ion species mix, and (as a separate topic) RF sheath impedance in the fusion environment taking 

into account secondary electron emission. Secondary electron emission is discussed briefly in 

section 6.3, and is treated for static sheaths in e.g. [Stangeby 2020] and [Campanell & Umansky 

2017]. 

Beyond the PIC benchmarking discussed in section 4.3, it would be desirable to have 

experimental validation of the microscale sheath model, but unfortunately very little is available.  

Many of the referenced experimental papers are at least consistent with the qualitative predictions 

expected from an RF-sheath-based theory. However, because of the complexity of the antenna and 

vessel geometry in fusion experiments, quantitative validation in the fusion setting will likely 

require complex ICRF simulations that implement the modeling described in this tutorial.  In 

simpler-to-model devices there is a bit more in the way of validation.  In unmagnetized plasma in 

the capacitive sheath regime, [Godyak & Sternberg 1990] report good agreement of sheath 

rectification calculations with experimental measurements in a mercury vapor discharge.  In this 

regime, the Godyak & Sternberg model is rather similar to NoFlu. Some other aspects of the micro-
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scale sheath impedance model presented here were validated in experiments on LAPD, but only 

within significant limitations [Myra 2020].  More complete validation awaits modeling 

implementations in progress. 

5. Sheath boundary condition 

5.1 Matching condition 

As far as waves in the global-scale bulk plasma region of the plasma are concerned, the 

effect of the sheath is to present the waves with an effective surface admittance which can absorb 

them, reflect them (possibly with a phase shift) or partially convert them to other wave 

polarizations (fast or slow).  Expressing the associated boundary condition (BC) in terms of the 

sheath impedance provides the mathematical framework for treating these phenomena. 

Since the sheath is normally thin compared with the scale length of variations both along 

and perpendicular to the surface, a one-dimensional treatment of the BC is almost always 

appropriate.  (Exceptions may occur at special points, such as where the magnetic field is tangent 

to a point on a sharply curved surface. See section 6.9.2.)  

The BC is obtained in the usual way at the interface between two media, by matching the 

normal component of the displacement vector D or equivalently the normal component of the total 

current density Jn = nJ.  The normal component of current on the sheath side of the interface is 

by construction related to the sheath potential by the sheath admittance.  To be more explicit, 

equation (4.13) or (4.14) states that the Fourier component at frequency  of the RF current on the 

sheath side is related to the RF voltage by Jn,sh = −yshsh where sh is the RF voltage at the sheath 

interface relative to the wall and we work in dimensional units. (The sign change is because it is 

now convenient to regard the wall as grounded and let sh represent the RF plasma potential.)  

The matching condition Jn,sh  = Jn,pl, where Jn,pl is the normal projection of current on the plasma 

side of the interface, may therefore be stated as sh sh n,ply J−  =  or equivalently as 

 sh sh n,plz J− =  (5.1) 

Taking the tangential gradient, i.e., the components of the gradient along the surface, results in the 

sheath BC for a sheath on a perfectly conducting surface8 

 t t sh n(z J )= E  (5.2) 

 
8 Sheaths on an insulating surface are discussed briefly in section 6.9.1. Here sh is the potential drop across the 

sheath. An additional potential drop across an insulator would also contribute to Et.  



   
 

43 

 

where it is now understood that Jn is to be evaluated on the plasma side of the sheath interface 

(since this is a BC to be applied on the plasma side) and Et = −tsh is continuous across the 

interface. Equation (5.2) and its companion equation defining zsh = 1/ysh in equations (4.13) and 

(4.14) are among the most important results of this tutorial paper. 

It is worthwhile noting that the parametric dependences of zsh expressed in equation (4.13) 

cause it to vary along the sheath surface on the same spatial scale as Jn; therefore, it should be kept 

inside the gradient, so that the electrostatic condition Et = −tsh is preserved (as an exact 

tangential gradient). 

Finally, because the physics within the sheath itself is electrostatic it has been natural to 

present the sheath boundary condition in terms of the scalar sheath impedance parameter zsh. More 

generally, for electromagnetic wave problems, matching conditions across an interface often 

employ an impedance matrix connecting the tangential components Et and Bt [Brambilla 1995]. 

The relationship between these two approaches for the sheath BC is presented at the end of section 

6.1. 

5.2 Quasi-conducting and quasi-insulating limits  

The general sheath BC given in equation (5.2) has limiting cases which are of practical as 

well as conceptual interest.  The quasi-conducting limit of an RF sheath occurs when the sheath 

impedance zsh is sufficiently small.  The precise meaning of ‘sufficiently’ needs to be deferred to 

section 6; suffice it to say for now that both Et and Jn relate to wave fields (or near fields) in the 

plasma, and therefore it can be anticipated that zsh should be compared with a wave impedance.  

When zsh has a negligibly small value, the sheath BC reduces to Et = 0 which is the usual BC for 

a perfectly conducting boundary.  In this limit, the sheath may be called quasi-conducting.  The 

quasi-conducting limit will typically occur at high density, small RF amplitude, and/or low 

frequency. In the quasi-conducting limit, the sheath voltage zshJn is clearly small: being a good 

conductor, RF current flow through the sheath results in little RF voltage drop. 

The opposite limit is that of the quasi-insulating sheath, for which zsh is sufficiently large. 

In this case the BC reduces to Jn = 0, equivalent to that of a perfectly insulating boundary. The 

quasi-insulating limit is mathematically equivalent to the ‘wide sheath limit’ [Colas 2012] where 

the case of electrostatic slow wave polarization is discussed. For the SW polarization, Jn  nD = 

n  E   bn||E|| is dominated by parallel physics and the BC Jn = 0 implies E|| = 0.  Not 

surprisingly, the quasi-insulating limit tends to give rise to large RF sheath voltages.  It typically 

occurs at low density, large RF amplitude, and/or moderate to high frequency.  

It would be incorrect to assume that zsh variations cause smooth and monotonically varying 

sheath effects between the quasi-conducting and quasi-insulating limits.  Between these two 

extremes, there is the possibility that the wave impedance and sheath impedance will form a 
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resonance, analogous to an ‘LC’ resonance in electronics.  A discussion of this case, which can 

produce very large sheath voltages, will also be deferred to section 6.  Other non-monotonic 

variations of zsh were shown in figure 14.  

5.3 Poisson-like formulation of the sheath BC 

The sheath BC is perhaps expressed in its simplest and most fundamental form by equation 

(5.2), namely as a matching condition on the tangential electric field.  However, for use in 

numerical applications, such as discussed in section 6, other implementations are possible.  

In one such implementation [Tierens 2019] the sheath BC is cast into a Poisson-like form 

using D = 0, i.e. 

 t t n nD−  = D  (5.3) 

where n = n is the derivative normal to the surface and Dt is expressed as a linear function of 

sh given by the solution of some simultaneous equations as follows.  

First define the tangential projection operator 

 tP I= − nn  (5.4) 

Then, applying tP  to =  D E yields 

 t t t t nP P E=    +   D E n  (5.5) 

If tP    n  were to vanish, the task would be complete since Et = −sh.  However, tP    n  only 

vanishes when b and n are parallel or anti-parallel. In general, an additional equation must be 

employed to express En in terms of sh.  That equation is just equation (5.1) with Jn = −iDn 

 sh
n

sh

D
i z


=


 (5.6) 

or equivalently 

 sh
t n

sh

E
i z


   +    =


n E n n  (5.7) 

Using equation (5.7) to eliminate En in equation (5.5) and using Et = −tsh we finally have the 

desired linear relationship between Dt and sh 

 t sh
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where 

 t t t
1

P (P )( ) =   −     
  

n n
n n

 (5.9) 

and the last term in equation (5.9) is to be interpreted as a dyad.  Equations (5.3), (5.8) and (5.9) 

are equivalent to equations (29) and (30) in [Tierens 2019] when a capacitive-like form is 

employed for zsh, i.e. zsh → i(sh). 

The Poisson-like character of the formulation, is evident from the quasi-insulating (‘wide 

sheath’) asymptotic limit where zsh → .  In that case equation (5.3) reduces to 

 t t t sh n nD     =   (5.10) 

which is just equation (27) of [Tierens 2019]. That reference also provides a numerical 

discretization scheme for the Poisson formulation.  

5.4 Dielectric layer formulation of the sheath BC 

An alternative to the explicit use of a BC that is currently being explored to model sheaths 

[Beers 2021] is to define a thin dielectric layer in such a way that it presents the same surface 

impedance to the plasma as the sheath BC.  In this implementation the layer is made thick enough 

that it can be resolved by the simulation grid, but still thin compared with other spatial scales in 

the problem (e.g., geometric scales or wavelengths).  The difference in thickness between the 

dielectric layer and the actual sheath is accounted for in deriving the dielectric properties.  A related 

method was previously explored for the capacitive sheath BC in a plasma processing simulation 

[Jaeger 1995].  It can be shown that the dielectric properties of the equivalent layer are given by 

the complex dielectric constant 

 
sh

la 0
d

ŷ d
i

ˆ
 = 

 
 (5.11) 

where d is the layer thickness.  The matching condition across the layer-plasma interface is, as 

usual, la la pl pl  =   n E n E where Ela is the electric field in the layer. The sheath voltage is then 

given as sh = −d nEla or explicitly 

 
pl pl pl pl d pl

sh sh n
la 0 sh sh

ˆd
z J

ˆi y iy

        
 = − = − = − = −

 

n E n E n D
 (5.12) 

independent of the layer thickness and in agreement with equation (5.1). 
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5.5 Dynamic sheath BC in the time domain 

The formulations of sheath BC discussed in the preceding subsections 5.1, 5.3 and 5.4 

apply to frequency domain codes which, having Fourier transformed in time, allow algebraic 

dependence on the RF frequency . Time domain electromagnetic codes have also been used for 

sophisticated RF modeling [Smithe 2007] including highly detailed three-dimensional geometry, 

and the non-linear evolution of the sheath potential [Smithe 2014; Jenkins 2015].  In this time 

domain approach, the effective sheath capacitance and resistance are included in lumped circuit 

model equations that are evolved on the bounding surfaces. The parameters of the lumped circuit 

elements can be tuned to match the impedance from the microscale model. The procedure has been 

successfully benchmarked against first principles PIC simulations in the capacitive sheath regime 

[Jenkins 2015]. 

In the time domain, the DC sheath potential may be obtained directly from the amplitude 

envelope of the RF sheath voltage, for example by implementing a lumped circuit rectification and 

low-pass filter model.  The amplitude information may then be used to tune the nonlinear 

dependence of the capacitance (through the sheath width ) and resistance in the lumped circuit 

model directly in the time evolution, obviating the need for the nonlinear iteration that is necessary 

in frequency domain codes (section 5.7). 

This is a significant advantage of the time-domain approach that may be especially 

important when the nonlinearity of the RF sheath BC gives rise to multiple roots, as discussed in 

section 6.2.  It is expected that a time-domain simulation should automatically select the physical 

root. Time domain codes have not yet, to the author’s knowledge, been applied in multiple root 

cases, but this should be a fruitful area of application. 

5.6 Sheath post-processing 

Although implementation of the sheath BC in full wave RF codes is required for accurate 

modeling, it is possible under some limitations to gain information about RF sheaths from codes 

which implement the more conventional perfectly conducting wall (CW) boundary condition, Et 

= 0 using a sheath post-processing method. [Myra 2019a] The basic idea relies on the assumption 

that, observing from the surface, the incoming waves are not affected by whether the BC is the 

CW BC or the sheath BC.  (An exception would be a resonant cavity or other situation where 

multiple reflections are important.) If the incoming waves are fixed, it is possible, given sufficient 

information at the surface under one type of BC, to transform the outgoing waves (and hence the 

total electric field) to another solution under a different type of BC using calculations purely local 

to the surface.  

This procedure was demonstrated using semi-analytical methods, to yield exact sheath BC 

results for flat walls and constant plasma parameters on the surface; and approximate results for 
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curved walls using local theory.  The input required from the CW solution is Jn on the surface, and 

the output is sh. The post-processing method is not expected to be useful for sheaths in 

complicated 3D geometries. 

5.7 Nonlinear iteration of the sheath BC 

When frequency domain methods are used to implement the sheath BC, some form of 

iteration is required to handle the nonlinearity that arises from the dependence of zsh on the wave 

amplitude, as expressed through  in section 4.1. This nonlinearity is related to, but conceptually 

different from, the nonlinear waveforms that appear internally in the microscale modeling. (See 

figure 13(e).) Here we are concerned only with the effect of the RF amplitude; the nonlinear time 

dependence has already been projected onto the Fourier mode  of interest. 

 To illustrate this conceptually we consider here a simple fixed-point iteration scheme.  

More sophisticated iteration or root-finding schemes such as the Newton–Raphson method [Kohno 

2017] may, however, prove useful. A fixed-point algorithm would proceed as follows: 

 

(i.) Make an initial guess for zsh (e.g., the CW limit zsh = 0). 

(ii.) Solve the global RF problem with the sheath BC using the current value of zsh. 

(iii.) From the solution, obtain Jn at each point on the boundary; calculate sh = −zshJn 

and then  = |esh/Te| . 

(iv.) Update zsh = 1/ysh at each boundary point with the new value of  using a 

microscale model or its parametrization sh x dc
ˆ ˆˆŷ ( , ,b , ,J )   . 

(v.) Go to step (ii) until convergence is achieved. 

 

Fixed point iteration has been implemented in several codes including a COMSOL 

workflow [Beers 2021], codes under development in the US RF SciDAC project [Bonoli 2020] 

and SSWICH in the EU [Tierens 2019].  It has been shown to converge rapidly (fewer than a dozen 

iterations) in 1D, 2D [Myra 2019a] and 3D [Beers 2021] cases where the boundary shapes were 

relatively simple and parameters where not close to multiple root conditions (section 6.2). 

Convergence properties for realistic 3D antenna tokamak geometry remain to be investigated. 

In cases where the sheath is ultimately expected to be in the quasi-insulating limit, it may 

be logical to begin the iteration with the guess zsh = , i.e., perfectly insulating BCs. In this case 

step (iii) on the first iteration must be modified since Jn will be zero. A suitable procedure would 

be to solve equation (5.10) or simply use it to estimate a reasonable order of magnitude guess for 

sh on the first loop of the iteration. Alternatively, one could choose zsh in step (i) to be finite but 

sufficiently large ( shẑ 1 ) so that sh = −zshJn in step (iii) is still a numerically well posed 

calculation. 
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6. Macroscale RF sheath effects 

Up until now, except for section 3, this paper has been mostly focused on the microscale 

description of the RF sheath.  The goal of the present section is to describe some of the global 

(macroscale) effects of RF sheaths on the plasma and in particular on the RF waves that propagate 

in the plasma volume. 

6.1 Sheath and wave impedance 

Section 5 characterizes the sheath impedance and introduces its two limiting cases, the 

quasi-conducting and quasi-insulating limits.  We are now in a position to discuss the conditions 

for when the RF sheath behaves in these limits, because these conditions depend on the impedance 

of the RF waves that are interacting with the sheath.   

The basic concepts and sheath interaction regimes were calculated in a semi-analytical 1-D 

model for the electrostatic slow wave in [Myra 2019b]. Consider a plane wave incident on a flat 

surface on which there is an RF sheath.  The geometry is illustrated in figure 15. The background 

magnetic field is at an arbitrary angle to the surface. In general, the wave-sheath interaction will 

result in a reflected wave with complex reflection coefficient Ar, and possibly some amount of RF 

power absorption by the sheath.  In a uniform plasma, the total electrostatic potential may be 

represented as 

 ( )1 2i i i t
rf re A e e

  −  =  +
k x k x

 (6.1) 

Here k1 and k2 are the two (incoming and outgoing) wavevectors that solve the electrostatic slow 

wave dispersion relation 

 2 2
|| ||

0

k k 0⊥ ⊥

   =

 +  =

k k
 (6.2) 

where  , ⊥ and || are given in the text following equation (3.2) and the notations ⊥ and || refer 

to perpendicular and parallel with respect to the background magnetic field. In the 1-D problem 

the components of k tangential to the surface are regarded as given, and the normal component is 

obtained from the dispersion relation. Note that k2n = − k1n only if b and n are parallel (or anti-

parallel) so that k⊥ = kt and k|| = kn. (Remember that n is the unit surface normal, not the index of 

refraction vector.  Since the present section is electrostatic, no confusion should result.) 
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Fig. 15. Geometry of a plane wave interaction with a sheath.  Reprinted by permission from figure 
1 of [Myra 2019b]. 

 

It is a straightforward exercise to compute E = − from equation (6.1), Jn = −i0n  E 

and then apply the sheath BC t t sh n(z J )= E to solve for the reflection coefficient Ar. Noting that 

kt1 = kt2  kt since kt is specified, and carrying out the algebra results in [Myra 2019b] 

 1
r

2

1
A

1

 −
= −

 −
 (6.3) 

where 

 s
j 0 sh j sh wj

wj

z
z z y

z
 =       =n k  (6.4) 

The preceding equation implicitly defines the wave impedance zwj and its reciprocal, ywj = 1/zwj 

the normal wave admittance for a plane electrostatic wave with wave-vector k, i.e. 
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where bn = bn. 

It is now clear that the quasi-conducting limit applies when |j| << 1 (j = 1,2). In this case 

Ar = −1 and the sheath reflects the wave as if it were a perfectly conducting wall.  Conversely, for 

|j| >> 1 the result is Ar = −2.  If, in addition to being large,  = −2 as it does when b and n 

are parallel (or anti-parallel), the sheath BC is in the quasi-insulating limit, Ar = 1 and the sheath 

reflects the wave just as if it were a perfect insulator. In general, the j are complex numbers and 
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it can be shown [Myra 2019b] that for propagating waves (i.e., kj pure real), the fraction of incident 

power per unit area that is absorbed by the sheath is 

 2
P rf 1 A= −  (6.6) 

and that the power per unit area absorbed by the sheath is Prf/A = fP |rf|
2 Re(yw1)/2. Additional 

discussion of power dissipation in the sheath and power balance is given in section 6.3 where the 

power dissipation is given in terms of ysh and |sh|2 = |1+Ar|
2|rf|

2.  

For 1 = 1, which gives Ar = 0, one has impedance matching and the waves are completely 

absorbed by the sheath.9 Finally, for 2 = 1 we encounter a resonance, formally Ar = . This 

special case is known as the sheath-plasma resonance, and is the topic of the next subsection. 

The preceding discussion is specialized to electrostatic slow waves. It can be generalized 

to the electromagnetic case by introducing a sheath impedance matrix defined by  

 t tZ=  E n B  (6.7) 

where the definition is motivated by [Brambilla 1995] and [Senior 1991]. Substituting J = ikB/0, 

(where as elsewhere J contains both particle and displacement currents) into the sheath boundary 

condition Et = iktJnzsh yields the sheath impedance matrix for plane waves,  

 sh t t sh 0Z z /= k k  (6.8) 

The interaction of waves at the sheath surface then involves the product sh jZ Y  where jY is the 

wave admittance matrix of the fast or slow wave in question.   

The coupling of fast and slow waves by the sheath BC is discussed in section 6.4. Here we 

note that the electrostatic parameter j is replaced by a vector triple product, equation (6.28), 

involving a combination t 0 sh jk z ( )   n e which is rather similar to j, where ej is the unit 

polarization vector for the fast or slow wave. 

6.2 Sheath-plasma resonance 

The condition 2 = 1 specifies that zsh = zw2, i.e., the outgoing wave impedance matches 

the sheath impedance. An intuitive understanding of the sheath-plasma resonance is most 

straightforward in the perpendicular sheath limit |bn| = 1, which will be considered for the rest of 

this discussion. In that case zw2 = −zw1 and the condition is 

 
9 Complete absorption, 1= 1, is not likely to arise in practice because of the required condition on the phases. 

Normally Im(zsh) > 0 since the sheath is capacitive-like in its response. Considering that || dominates ywj, the 

condition j = 1 then requires Im (kjx) < 0 in the geometry of figure 15, i.e., exponential decay as one moves away 

from the sheath, from right to left.  This can occur for the ‘reflected’ wave, but is not compatible with causality for 

the incident wave. 
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 sh w1z z 0+ =  (6.9) 

This is just the condition for a series resonance of two circuit elements, the so called ‘tank circuit’ 

that exists between a capacitor with positive imaginary impedance and an inductor with negative 

imaginary impedance.  

The simplest sheath-plasma wave interaction example is that of a capacitive sheath, zsh = 

i/(0) from equation (2.11), interacting with an electron plasma wave (slow wave).  The slow 

wave admittance from equation (6.5) is, retaining only the dominant || term, 

 

2
0 pe ||,1

w1 0 || ||

k
y k

 
=    −


 (6.10) 

For an inductive-like response, the slow wave must be evanescent, i.e., k||,1 pure imaginary. 

Considering the electrostatic dispersion relation, equation (6.2), this can happen for real k⊥ at 

sufficiently high density such that ⊥   and || < 0. In the geometry of figure 7(a) or figure 12 

with b = n = ex, and considering the left sheath, the incoming wave, exp(ik1x), must decay towards 

the wall, which requires k||,1 = −i with 2 1/2
||(k / ) 0⊥ ⊥ =    .  This gives the inductive-like 

response 

 w1 2
0 pe

i
z

− 
=

  
 (6.11) 

Physically, the response arises from the parallel electron current reacting against the parallel 

electric field. The sheath plasma resonance condition (6.7) in this specific case, reduces to 

 
2
pe

||2
1

 
=  − 


 (6.12) 

The outgoing wave is amplified by the resonance (an infinite amount in this idealized example) 

and has k||,2 = +i It decays away from the surface and dominates the total wave field.   Not only 

must equation (6.12) be satisfied but also the dispersion relation, equation (6.2), which requires a 

finite k⊥ (tangential to the surface in this example). This solution is therefore also referred to as a 

sheath-plasma wave propagating along the surface. 

Sheath-plasma waves (resonances) have been known for many decades. [G. Bekefi 1966; 

Stenzel 1988] and studied in RF plasma discharge cells [Lieberman 2008]. More recently, they 

have been observed in global RF simulations employing a sheath BC. [D’Ippolito 2008; Kohno 

2017].  In [Kohno 2017] global RF simulations demonstrate some cases in which the generalized 

sheath BC, i.e., retaining ion and electron contributions to the sheath impedance, resolve the 

resonant singularity and in some cases completely destroy the sheath-plasma resonance. Whether 
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the resonance occurs in practice will depend in part upon the relative importance of dissipative to 

capacitive contributions in zsh. 

Finally, note that the sheath width  appearing in equation (6.12) depends on the RF wave 

amplitude through the Child-Langmuir relation equation (2.7) in the capacitive model; more 

generally zsh in equation (6.9) depends on  as expressed in equation (4.13). This means that the 

resonance may occur for particular values of rf, multiple roots can occur [D’Ippolito 2008; Kohno 

2012] and there can be positive feedback between the amplification of rf and the approach to 

resonant conditions. In a driven problem (e.g., by antenna or fixed wave impinging on the sheath) 

the self-consistent solution for rf plotted against a parameter such as density or magnetic field 

inclination usually exhibits a familiar ‘S-shaped’ curve.  See for example figure 6 of [D’Ippolito 

2008]. Thus, there can be 1 or 3 roots (2 at the special case of inflection points). 

When several roots are possible mathematically, the procedure for deciding which root is 

physical is not obvious. At very low RF voltages, only 1 root exists (at least in the cases examined 

in the literature). As the RF voltage is increased and multiple roots appear, it is usually assumed 

that the physical root is the one that tracks continuously from the single root condition. At some 

point it may happen that continuous root tracking is no longer possible and then the root must jump 

from the low voltage root to the high voltage root. The middle ‘S-shaped’ root is usually assumed 

to be an unstable fixed point. Demanding continuity of roots, when possible, in general leads to 

hysteresis if the multiple root regime is approached from the high voltage side.  It remains to 

investigate multiple root cases in realistic 3D geometry.  A time domain approach (section 5.5) 

may provide the best answer to root selection in these cases. 

A different example of the effect of wave amplitude on the structure of the sheath-plasma 

wave solution is shown in figure 16 from [Kohno 2019]. In this case the small amplitude solution 

at left, figure 16(a), is far from sheath-plasma resonance and the wave-field pattern remains linear, 

with a sheath BC that is almost that of the thermal sheath.  The large amplitude solution at right, 

figure 16(b) is close to sheath-plasma resonance. Parameters other than the wave amplitude are the 

same in the two cases. The spreading of the waves in the y-direction is the damped propagation of 

the sheath-plasma wave. Both solutions solve the self-consistent problem (i.e., with iteration) using 

the generalized sheath BC. Note that the color palette has been scaled with the antenna current to 

enable better comparison of the wave-field structures. 

6.3 Sheath power dissipation, surface heat load and power balance 

The amount of RF power dissipated in the sheath, the heat load on the material wall surface 

from particle impact and an understanding of power transfer and overall energy balance in the RF 

sheath are of great importance.  These topics are more subtle than might appear at first glance. 
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The power dissipation per unit volume within the sheath is given as usual by JE. In 

general, this can be divided into contributions from the DC and RF parts of J and E.  Considering 

the RF contribution for waves varying in time as exp(−it), the net power dissipated per unit 

volume is  

 rf
1

P / V Re
2

= J E  (6.13) 

Integrating over the volume of the sheath, again regarding x as the variable normal to the surface 

one obtains the net power dissipation per unit sheath area A as 

 

 

 

Fig. 16. RF wave field Re (E||) contrasting two cases: (a) a linear case with very small antenna 
current of 1 A/m and (b) a nonlinear case near sheath-plasma resonance with antenna current 
100 A/m. Both solutions solve the self-consistent problem (i.e., with iteration) using the 
generalized sheath BC. The thick black line at x = 0.47 m is a model antenna and the sheath is 
located on the wall at x = 0.50 m. Reprinted by permission from figure 4 of [Kohno 2019]. 
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 (6.14) 

This expresses the sheath power dissipation in terms of the RF sheath potential sh.  See 

also equation (6.6) and the following text which expresses the sheath power dissipation in terms 
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of the incident wave amplitude rf.  The equivalence of these two expressions is proved in 

Appendix B of [Myra 2019b]. Here,  in the integration is to be interpreted as the sheath edge 

(sheath entrance) and the fact has been used that the total Jn (including displacement as well as 

particle currents) in the sheath is spatially constant (see the discussion immediately following 

equation (4.7)) and matched to the plasma side of the sheath.  The final step invokes the definition 

of ysh  1/zsh in equation (5.1).  Thus, once a self-consistent solution for the potential drop across 

the sheath, sh (=  −  in the notation of the microscale model) has been found, the RF part 

of the sheath dissipation is readily computed. It will be shown below that this power appears as a 

heat load on the surface. It also contributes to RF edge losses that are often observed in 

experimental scenarios, especially when single pass absorption is low, or significant wave fields 

exist in the boundary region, e.g., due to coaxial modes. [Messiaen 2020] A caveat is that, in accord 

with remarks made in section 4.2, the treatment of ysh given here relates only to the fundamental 

RF frequency at , ignoring harmonics. A more general expression for power dissipation taking 

into account all harmonics should really be employed in cases where the electron current is 

strongly nonlinear. 

Similar remarks apply to the DC parts of J and E in the case where the sheath carries net 

DC current. The sheath behaves as a resistor that converts the electrical energy into heat. 

 dc n 0P / A J= −   (6.15) 

where here and in equation (6.14) Jn is negative when there is net ion current flowing into the left 

sheath of figure 12. 

For some plasma-material interactions such as surface melting, a quantity of interest is the 

net power per unit area incident on the surface. Expressing the result from [Stangeby 2000] in the 

present notation we have the dimensionless heat flux at the wall x = x1 given as 

 sh
x1 i sh i1 x1 e xq (2.5T )n u 2T b e

−
= +  −   (6.16) 

Here ni1ux1< 0 is the x-component of the ion particle flux at the wall, 2.5 Ti is the thermal heat 

flux where 2.5 is an approximate model-dependent coefficient [Stangeby 2000], sh =  −  > 

0 is the (total RF + DC) potential drop that the ions fall through, and the last term is the electron 

thermal energy, i.e., 2Te times the electron particle flux at the wall. 

It is important to distinguish between the heat flux at the wall and the heat flux at the sheath 

entrance, x = x0 (‘upstream’ in our nomenclature, but not far enough upstream to include the source 

presheath).  At the sheath entrance we have 

 sh
x0 i i0 x0 e sh se xq 2.5T n u [2T (1 )] b e

−
= − +  −    (6.17) 
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Here in dimensionless units ni0 = 1, ux0 = −bx and we have allowed for secondary electron 

emission with coefficient se in the electron term.  Note that the magnitude of the electron particle 

flux is reduced by the secondary electron emission 

 sh
x0e se x(1 ) b e

−
 = − −    (6.18) 

but the heat flux from incident electrons at the wall does not depend on e. [Stangeby 2000] At 

this upstream location, the ions have not yet been accelerated through the sheath but the electrons 

have additional kinetic energy since they have not yet been slowed down by the potential. 

With the caveat that the 2.5 Ti coefficient has not been readdressed for the RF case, (e.g., 

ion jitter motion in the RF fields has not been accounted for, but is expected to be small), we can 

apply these expressions to obtain an understanding of the mean surface heat load in the RF case, 

and the role of the sheath and the RF waves on power balance. 

The time averaged fluxes expressed in terms of the dimensionless signed current are 

 x1 e xe1i xi1 xi1 shq 2.5T J J 2T J= +  −  (6.19) 

at the wall, and 

 x0 e xe0 xe0 sei xi0 shq 2.5T J 2T J J (1 )= − −  −   (6.20) 

at the sheath entrance. Here <Jxi0> = <Jxi1> from the ion continuity equation, <Jxe0> = <Jxe1> and 

the DC current flowing through the sheath is 

 xe0 sexi0J J J (1 )+= −   (6.21) 

Combining equations (6.19) and (6.20) results in 

 x1 x0 xe0 sexi0 sh shq q J J (1 )− = +  −   (6.22) 

Neglecting the second harmonic contribution to power balance (see section 4.2) we take sh = 

<sh> + sh  where sh  is the RF driving voltage.  Then using equation (6.21) 

 

dc rf

x1 x0 xe1 sesh xi1 sh sh

/ A P / A

q q J J J (1 )

P

− = + +

−

   − 

= −
 (6.23) 

or equivalently, 

 x1 x0 dc rfq q / A P / AP− +=  (6.24) 
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This demonstrates that the DC and RF electrical power dissipated in the sheath adds to the 

incoming heat flux at the sheath entrance, and ultimately appears on the wall surface. 

In [Myra 2019b] it was shown, albeit for the special case of slow waves, that the power 

lost in the RF wave energy flux is equal to the power dissipated in the sheath when the sheath BC 

is employed.  Thus, we can assert that the RF waves ultimately supply the power that is needed to 

maintain the RF-enhanced sheath-rectified potential and that this power appears at the plate in the 

form of enhanced ion heat flux. 

This sub-section is closed with a brief remark about the effect of secondary electron 

emission on RF sheaths. Because  is large, i.e., the electron thermal velocity is large compared 

with the sound speed, the electron fluxes at the wall also tend to be large.  The sheath self-biasing 

including RF sheath rectification reduces the large electron flux, but at the price of creating high 

energy ions which enhance sputtering. As the secondary electron coefficient se increases, the 

electron current is reduced and with it the rectified RF potential, and the sputtering.  The same 

reduction in 0 also occurs if we simply allow the surface to draw a large electron current. 

[Stangeby 2000; Perkins 2017] Under these circumstances the total heat flux (which, being 

specified upstream, is a given as far as the RF sheath is concerned) is transferred from the ion 

channel to the electron channel.  Although this does not affect the total power deposition on the 

surface, it may be beneficial for reducing sputtered impurities. 

6.4 Fast wave to slow wave conversion  

As introduced heuristically in section 3.3 and 3.4, although the SW polarization is directly 

responsible for strong RF sheath interactions, fast waves incident on the surface can also generate 

RF sheaths because of boundary-induced mode conversion between the fast wave and slow wave 

polarizations.  In the present section, this is investigated in more detail. 

The basic mechanism of the interaction can be understood in a slab geometry with plane 

waves. [D’Ippolito 2008] The surface is the plane x = 0. The total electric field may be represented 

as 

 j
2 i i t

j j
j 0

E e
 − 

=

= 
k x

E e  (6.25) 

where E0e0 is the incident fast wave, E1e1 is the reflected fast wave, and E2e2 is the reflected slow 

wave.  Here ej is the unit polarization vector of each mode (not to be confused with the cartesian 

coordinate directions),  is assumed to be given along with ky and kz (i.e., the components of kt 

tangent to the surface), and the normal component kx is determined from the dispersion relation. 

The polarization vectors ej may be determined analytically when the fast and slow branches are 

well separated [D’Ippolito 2008], but the formalism remains valid in the case of mode confluence. 
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It should be noted that in general, kx1  −kx0 for an oblique magnetic field, and e0  e1 because 

the polarization vectors depend on kx. 

Applying the sheath BC, equation (5.2) using Jn = −in  E and crossing with n to extract 

the tangential components results in the condition at the sheath surface (x = 0) 

 

2

j j
j 0

E 0

=

 = n g  (6.26) 

where 

 j j t 0 sh jz ( )= −    g e k n e  (6.27) 

(Recall that n is the surface normal, not the index of refraction.  The latter quantity will not be 

employed in this section.) Dotting equation (6.26) with g1 or g2 allows the amplitudes of the 

reflected (propagating or evanescent) branches, E2 and E1 respectively, to be determined.  For the 

slow wave branch, one obtains 

 
0 1

2 0
1 2

E E
 

=
 

n g g

n g g
 (6.28) 

From the previous equation it is clear that there are conditions which make the denominator 

small (resonance) and other conditions which make the numerator small. In the case where the 

slow wave is electrostatic, e2  k, one recovers the electrostatic sheath plasma resonance condition 

where the magnitude of g2t vanishes.  This is just the condition 2 =  of equations (6.3) and (6.4) 

In the electromagnetic case here, it is possible for the cross product in the denominator to become 

small by virtue of the directions of gj.   

The numerator involves the fast wave (FW) quantities g0 and g1. For modest values of kt 

the second term in equation (6.27) is often not large for FWs because ej has a negligible parallel 

component.  This eliminates the large term  and, assuming the terms involving ⊥ and  are 

small, the numerator of equation (6.28) reduces to ne0  e1.  One can immediately see that in the 

case of a normal incidence magnetic field, i.e., bn = 1, there can be no slow wave generated because 

e0 = e1. (The fast wave polarization is independent of the sign of k||.)  RF wave interactions with 

the wall require oblique incidence if a slow wave and significant RF sheath are to be generated. In 

practical terms it means that far-field fast wave sheaths in a tokamak occur on material surfaces 

that do not conform to magnetic flux surfaces. Other properties are discussed in [D’Ippolito 2008]. 

In this model we can expect the largest RF sheath voltages driven by incident fast waves 

to occur for conditions of oblique incidence and parameters close to sheath plasma resonance. The 

latter condition typically requires kt to be ‘large’ i.e., large enough to satisfy g2t << 1. Although it 
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is outside the scope of our simple slab model, we can argue heuristically that a fast wave incident 

on a sharply curved surface necessarily acquires an effective kt at the surface that is large.  For this 

reason, fast wave to slow wave conversion is expected to be prominent near places where the local 

magnetic field incidence angle parameter bn changes rapidly along the surface.  Referring back to 

figure 10, in particular 10 (c), this is indeed seen to be the case in a far-field simulation which 

incorporated a curved wall impacted by an incident fast wave. [Kohno 2015 and 2016] 

6.5 RF driven convection 

From section 4 we know that RF sheaths are associated with rectification, i.e., the 

formation of large DC potentials on field lines in the global plasma. The size of the potential on a 

particular field line depends primarily on the amplitude of the RF waves where the field line 

contacts the surface, and as well on other parameters as described in equation (4.12). Because 

adjacent field lines can contact different surfaces on a complicated 3D structure like an antenna, 

and because RF amplitudes can vary rapidly along some surfaces, these adjacent field lines charge 

up to different electrostatic potentials.  The good parallel electrical conductivity of the plasma 

relative to its perpendicular conductivity enforces DC electric fields which are weak in the parallel 

direction but can be strong in the perpendicular direction.  The result is that RF dominated edge 

plasmas are often subject to strong EB drifts. This convection can impact the density profile near 

an antenna, thus affecting the antenna coupling and the particle and heat fluxes on nearby surfaces 

and the resulting impurity generation. 

A low particle confinement H-mode was triggered on the JET experiment during ICRF 

operation in monopole phasing, a phasing which should generate the strongest RF sheaths and 

convection. (See figure 9 (a) and its discussion for an explanation of the role of phasing.) The H-

mode interaction and increased particle transport across the separatrix was attributed to the 

formation of separatrix-crossing convective cells as illustrated in figure 17. [D’Ippolito 1993] In 

experiments from the same era, large scale convection was observed surrounding the antenna on 

the Tore Supra tokamak [Bécoulet 2002]. Additional experimental evidence is summarized in 

[Colas 2007]. More recently, [Zhang 2017] has modeled ICRF driven convection near an antenna 

in ASDEX Upgrade and [Hong 2017] has employed gas puff imaging to measure ICRF-driven 

convection velocities on Alcator C-Mod and thereby infer the rectified potential amplitudes.  RF 

driven convection in lower hybrid (LH) experiments was also observed in Alcator C-Mod 

especially on field lines that were magnetically connected to the LH launcher [Lau 2013]. ICRF 

driven convective cells were also observed in the linear LAPD device [Martin 2017]. 

An interesting aspect of RF-driven convection is its interaction with plasma turbulence. In 

the SOL, such turbulence is manifest in the formation of blob-filaments. [Krasheninnikov 2008] 

Not surprisingly, the strongly sheared flows from RF-driven convection can shear and even tear 
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apart the blobs as shown in theoretical studies [Myra 2006] and observed in experiments [Zhang 

2019].  Sheared flows could also drive turbulence, as discussed briefly in section 6.7. 

 

 
Fig. 17. Illustration of some different types of convective cells that can form around an antenna.  
Reprinted by permission from figure 3 of [D’Ippolito 1993]. 

 

6.6 Global DC circuits 

In a real tokamak sheaths exist on a variety of different surfaces with different plasma and 

magnetic field parameters and driven by different RF field amplitudes. A highly schematic 

illustration of this type of situation is shown in figure 18. On a given field line or flux tube, the 

sheaths at the two different ends are usually not symmetric, except perhaps in the special case of 

certain near-field antenna sheaths.  From section 4, it will be recalled that the rectified (DC) voltage 

in the plasma, i.e., at the sheath entrance, will therefore be different at the points A, B, D and E in 
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figure 18. In general, this will drive currents flowing both through the plasma and in the vessel 

walls.  The DC current-voltage relationship, represented as a resistance in the figure, will 

determine the currents in the various paths.  In the plasma, the current can flow both along and 

across field lines.  Of course, the parallel conductivity in a plasma is many orders of magnitude 

larger than the perpendicular conductivity, but on sufficiently long field lines the net perpendicular 

current flow may be competitive.  

Whole device modeling of this in a real tokamak would be a daunting task.  The DC 

current-voltage relationship for the sheath is not only nonlinear, but nonlinearly coupled to the RF 

wave amplitudes at the surface, which in turn must be determined from global full wave solvers 

using the sheath boundary condition.  Furthermore, the DC sheath potential and RF sheath 

impedance in that boundary condition are dependent on the DC currents flowing through each 

patch of sheath.  

 

 

 

Fig. 18. A conceptual illustration of asymmetrical RF sheaths and the associated DC current paths 
in a complex structure.  The thick black line represents a grounded wall. Magnetic field lines (solid 
black) and associated flux tubes (blue) provide current paths with volume resistance illustrated 
between E and F and terminated by effective DC sheath resistances at A, B and D.  A cross-field 

current path (dashed black) and associated resistance is illustrated between C and F. The RF 
amplitude driving the sheaths (gray and shown with a greatly exaggerated scale) is large at A, 
smaller and B and D and negligible at E. The expanding flux tube between B and D indicates a 
different magnetic field strength at those locations, and the magnetic field angle is different at E 
than at A. 
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As if that were not enough, the cross-field conductivity in a fusion SOL plasma is expected 

to be determined by turbulence rather than classical collisional processes. This could, in some 

cases, be the normal SOL turbulence that is always present, but more likely, when strong RF-

driven convection is present, the turbulence may be caused by flow instabilities such as the Kelvin-

Helmholtz instability. Some theoretical work on turbulent cross-field conductivity in this type of 

situation is presented in [Tamain 2017] where a fluid turbulence code is employed. 

The coupling of DC and RF currents and voltages was included in a simple geometry in 

the original SSWICH model [Colas 2012] which invoked a phenomenological cross-field 

conductivity constant; more recent discussions of this model are given in reviews of simulation 

tools and modeling [Heuraux 2015; Zhang 2021]. Examples of other works considering 

asymmetric sheaths and DC current flow are described in [D’Ippolito 2002; Ngadjeu 2011, Jacquot 

2014, Faudot 2015; Perkins 2017]. 

6.7 Radial penetration of sheath fields 

A topic that is somewhat related to the previous discussion is that of the penetration of RF 

slow wave and DC fields from active and passive surfaces into the SOL and edge plasmas. An 

example of the geometry where these issues could arise is shown in figure 19. Suppose that some 

RF fields with a slow wave (and hence sheath generating) polarization are present at the antenna 

surface along the magnetic field line A-C with a spectrum of k|| values. The penetration of the 

fields in the perpendicular (to B) direction is determined in standard linear theory by the slow wave 

dispersion relation, equation (6.2) or its electromagnetic generalization [Stix 1992] 

 
2 2 2

|| || 0 ||k k k⊥ ⊥ ⊥ +  =    (6.29) 

where k0 = /c. If the plasma density is sufficiently low, the slow wave can propagate and fill the 

volume.  More typically, the slow wave is evanescent and decays on the scale es ~ (me/mi)
1/2/k|| 

in the electrostatic limit,
2 2
0 ||k k⊥ , and on the scale em ~ c/pe in the electromagnetic limit,

2 2
0 ||k k⊥ . These scale lengths are very short, often only a few mm for plasma conditions where 

good antenna coupling is possible. If RF sheath rectification effects are only present from local RF 

fields on the limiter surface, then they too and the EB convection they generate should be 

confined to relatively small distances from the antenna surface. Experimental observations 

[Cziegler 2012, Hong 2017, Van Nieuwenhove 1992, D’Ippolito 1993, Gunn 2008] show that DC 

fields typically penetrate one or two cm radially, much larger than es or em. We will consider 

some physical mechanisms that can influence the penetration of sheath-induced potentials. 
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Fig. 19. Schematic geometry in the radial (vertical)  - toroidal (horizontal) plane. In this 
configuration penetrtion of RF-generated sheath fields either towards the main SOL or in the 
secondary SOL between the antenna and the limiter could be of interest. 

 

 

One class of mechanisms involves nonlinear RF physics in the plasma volume, unrelated 

to sheath physics. If the slow wave fields are sufficiently strong, the ponderomotive force can 

expel plasma along the field lines away from the region of strongest intensity. [Russell 1998, Myra 

2006, Van Eester 2015] The plasma density may then be low enough to allow slow wave 

propagation in the depleted plasma channel, thereby increasing the radial penetration distance.  In 

less extreme cases, the reduced density may increase em or allow the es estimate to apply.  The 

condition for significant expulsion is that the ponderomotive potential p exceed the temperature. 

Expressions for the ponderomotive potential in fluid theory are given in [Lee 1983] and [Catto 

1989]. In order of magnitude p ~ 
2mv / 2 where m is the species mass (electrons or ions) and v

is the species jitter velocity in the RF fields. For slow wave ICRF fields, the jitter velocity is 

dominated by ||v for electrons, and by v⊥ for ions.  Thus, the jitter velocity must be comparable 

to the thermal velocity for a large ponderomotive effect. 

Even if RF nonlinearities in the volume do not directly cause increased radial penetration, 

interaction with the sheath can occur in several ways. One, already introduced in section 6.2, is 

propagation of a sheath plasma wave along the sheath surface of the limiter in figure 19. The sheath 

plasma wave can be strongly evanescent along B, moving away from the sheath surface, i.e., k|| is 

imaginary, which permits a real k⊥ in the slow wave dispersion relation and consequent radial 

penetration in a high-density plasma.  The sheath-plasma wave is nothing more than a type of slow 

‘surface’ wave that is enabled by the sheath boundary condition. In order to have significant 

interaction of the antenna fields with a limiter, the limiter must be sufficiently close. In a simplified 

RF excitation model [Myra 2010] the sheath interaction was found to be strong in dense plasmas 

(so that the slow wave is evanescent) when L|| << i where L|| is the magnetic connection length 

and i =c/pi is the ion skin depth. This condition is essentially a consequence of equation (6.29) 

which is roughly 
2 2 2 2

em || ik k 1⊥ +  = −  in the ICRF and/or HHFW regimes. The model does not 

account for a realistic antenna spectrum, and it is plausible that sheath excitation would occur for 

antenna

limiter main SOL

A C
B
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L|| > i if the antenna excites significant amplitudes for modes with k||i < 1 and specifically with 

k||L|| ~ 1.  A Green’s function method for assessing the parallel proximity effect of antenna and 

wall with more realistic excitations is described in [Colas 2017], but in this case it is difficult to 

extract a simple analytical scaling. 

A separate RF sheath related effect, considered by [Faudot 2010] modifies the RF 

dispersion relation equation (6.29) and thereby changes the RF penetration depth perpendicular to 

B. On field lines that terminate on nearby sheaths where the magnetic connection length is short 

enough to apply the flute limit k||  0 in the plasma volume, one can integrate J = 0 along the 

field lines and employ the sheath current J|| in place of the usual fluid response.  That is, instead of 

J|| = ||E|| with parallel conductivity || = i0pe
2/2 one now has J|| = neecs[1−exp(−e/Te)] → 

nee2cs/Te upon linearization. The electrostatic dispersion relation is then k⊥J⊥+2iJ||/L|| with J⊥ = 

−i⊥k⊥, ⊥ = −i0⊥ and with the usual ⊥ given following equation (3.2).  The factor of 2 is 

from the two sheaths at the ends of a given field line. For a rough estimate relevant to ICRF (  i 

but not too close to resonance and above the lower-hybrid density), one may take ⊥= pi
2/i.  

Using k⊥
2 → −L⊥

2 the penetration depth is then estimated as 

 

1/2
s ||L

L ~
2

⊥

 
 
 

 (6.30) 

which is essentially the [Faudot 2010] result, except for s → i. The applicability of the flute 

approximation again requires a sufficiently small L|| or a sufficient large excitation of low k|| 

modes. 

All of the mechanisms discussed so far are associated with the RF wave. There are also 

mechanisms that operate on the ‘DC’ time scale, i.e., the much slower time scale of plasma 

turbulence. The turbulent cross-field conductivity mentioned in the previous section as well as 

other mechanisms permitting perpendicular currents (such as the current from neutral-plasma 

friction) will act to increase radial penetration of DC or slow-time scale electric fields from sheath 

rectification.  

In [D’Ippolito 2002] an estimate of the radial penetration depth of ‘DC’ fields was made 

from the vorticity equation by balancing the nonlinear (low frequency) ion polarization current 

with the parallel sheath current on field lines not directly connected to the antenna, but passing in 

front of it.  (The term ‘DC’ is use loosely here because it is expected that strongly sheared RF 

potentials will result in Kelvin-Helmholtz instabilities and time-varying turbulence, which 

nevertheless will be low frequency compared with RF frequencies.)  The vorticity equation is a 

statement of charge conservation J⊥= −||J|| and the terms in question read  
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 
 +    =  − 


v  (6.31) 

where the Boussinesq approximation has been made on the left-hand side (constant density in pi) 

and vE = B⊥ /B2.  Here a slight departure from the notation of previous sections is made in 

that  is the upstream potential (previously denoted in the microscale model by 0) because the 

macroscale plasma is now being considered.  

As in equation (2.2) when  = (Te/e) ln  (~ 3.18 for deuterium), there is no parallel current 

flow; otherwise, the circuit must be completed by ion polarization currents represented by the left-

hand side of the equation. In the latter case the problem is necessarily two (or three) dimensional.  

For simplicity, we assume perpendicular incidence of the magnetic field as in figure 19.  

Estimating || ~ 1/L|| and ⊥ ~ ex/Lx + ey/Ly, where Lx and Ly are the radial and binormal 

(approximately poloidal) scale lengths of the potential, one obtains on the left-hand side 
2 2 3

t E x y( ) ~ / (BL L )⊥ ⊥ +    v where the estimate assumes that t < vE⊥ and Lx < Ly.  

On the right-hand side we consider the case where just in front of the antenna the plasma potential 

is large and positive so that the parallel current is approximately the ion saturation current, necs. 

These rough approximations result in the order-of-magnitude convective cell penetration length 

estimate and scaling [D’Ippolito 2002] 

 

1/3 2/3
||

x s
y e

L e
L ~

L T

   
     

  

 (6.32) 

where s = cs/i. A slightly different scaling is obtained if Ly ~ Lx. Although equation (6.32) 

should capture the main qualitative scaling trends of this mechanism, the actual, likely turbulent, 

situation presents a formidable challenge for analytical estimates. This is due in part to the fact 

that turbulence by its very nature presents a range of time and space scales which are difficult to 

represent in simple estimates of the type presented here. 

As of this writing, there is no single, generally accepted explanation for the experimentally 

observed radial penetration of the RF-induced sheath potential. 

6.8 Impurity sputtering 

As mentioned several times previously, one of the main deleterious effects of RF sheaths 

is the enhanced sputtering that results from ions being accelerated by the RF sheath electric field, 

and impacting the surface at energies much greater than thermal.  In the high frequency  >> pi 

‘immobile-ion’ limit the inertia of the ions prevents them from responding to the RF oscillations 

but they are still accelerated into the wall by the rectified DC sheath electric field.  On the other 
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hand, in the low frequency  << pi ‘mobile-ion’ limit the ions respond to the total instantaneous 

sheath electric field which oscillates about the DC field, being alternately larger and smaller during 

the RF cycle.  

The implications of this for sputtering were addressed using a fluid sheath model (similar 

to NoFlu) and a prescribed mapping to kinetic ion distribution functions and then to energy 

dependent sputtering coefficients in [Elias 2019]. A recent extension calculates ion energy angle 

distributions (IEAD) directly from particle-in-cell sheath simulations using the hPIC code [Elias 

2021]. Results were also compared with the energy and angle obtained from the NoFlu model of 

section 4.1.  It was shown that for mobile ions the IEAD has two ‘centers’: one corresponding to 

the low sheath voltage part of the RF cycle at low energy close to the magnetic field angle and 

another corresponding to the high sheath voltage part of the RF cycle at high energy and with an 

angle that is pushed more towards perpendicular incidence on the wall.  For nearly grazing 

incidence magnetic fields or at high frequency  >> pi, the two centers coalesce as a result of 

increased ion inertia.  

Integrated simulations taking into account RF propagation or evanescence at surfaces, RF 

sheaths, sputtering and subsequent transport of impurities are required for modeling experiments, 

and are being developed.  Further discussion of this topic is beyond the scope of the present paper. 

6.9 Other topics 

6.9.1 Insulating coatings 

Many experimental facilities have employed insulating coatings between the wall or 

antenna and the plasma to mitigate ICRF-induced sheaths. The idea stems from original work by 

[Majeski 1994]. In the corresponding lumped circuit model, the sheath is in series with an insulator, 

as illustrated schematically in figure 20. [Myra 1997] The RF voltage divider so created results in 

only a fraction of the total RF voltage being dropped across the sheath; the rest appears across the 

insulator.  This reduces the sheath voltage available for accelerating ions into the surface.  

Consequently, if the insulator has a high enough impedance relative to the sheath, sputtering can 

be greatly reduced.  Unfortunately, so far it has not been possible to identify insulating materials 

that are compatible with fusion reactor requirements.  The ideal material would be electrically 

insulating but have some thermal conductivity in order to tolerate the plasma heat load.  Some 

promising exploratory work on a new class of composite insulators developed for this purpose are 

discussed in [D’Ippolito 1997]. 
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Fig. 20. Circuit diagram illustrating the effect of an insulating coating in reducing the sheath 
voltage. Here V is the total RF voltage at the sheath entrance, Vsh and Vin are the voltages 
appearing across the sheath and insulator respectively. In general both the sheath and insulator 
may have resistive and capacitive contributions to the impedances.  Reprinted by permission 
from figure 1 of [Myra 1997]. 

6.9.2 Tangent and grazing magnetic fields 

A number of modeling complications occur when the magnetic field grazes the surface at 

a small angle.  This situation remains to be addressed in any comprehensive and complete way, 

even for static sheaths, let alone for biased RF sheaths. Nevertheless, the brief remarks here will 

expose some of the issues. 

Physically, the sheath changes character when the magnetic field angle with the surface is 

sufficiently small that the electrons are no longer the species tending to have the largest particle 

flux into the surface (in the absence of a sheath potential). Estimating at the non-neutral sheath 

entrance where the Bohm condition is met, this condition happens when |bn|vte < cs. For smaller 

|bn| the sheath potential can reverse in order to confine the ions.  At exact tangency, bn = 0, ions 

strike the wall by ‘scrape-off’ from finite gyro-radius effects and ion fluid motion perpendicular 

to B. These latter two effects are estimated to be in the ratio i/ where 2
   esh/(mi

2
i )  

However, without cross-field transport there would be no net flux of either species to a flat 1-D 

wall beyond an initial transient phase. [Gerver 1990] It is expected that in this rather special 

situation, anomalous (e.g., turbulent) transport would control the structure of the sheath. Indeed, 

Kelvin-Helmholtz vortices played this role in corresponding simulations. [Parker 1992] Because 

points where bn = 0 occupy a measure-zero set in realistic fusion-device geometry with curved 

boundary surfaces, it might be hoped that a careful treatment of these special points is not required 

in the modeling of RF sheaths.  At present this is not yet clear. 
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Consider a case where the magnetic field component normal to the surface approaches bn 

= 0 as one moves along the surface.  In the sheath boundary condition, equation (5.2), the 

impedance zsh remains finite under the model of section 4.  (The particle admittances ye and yi go 

to zero in the limiting case, but the capacitive contribution yd remains.)  On the plasma side of the 

sheath the RF current directed into the plate is given by n 0J i= −    n E  where as usual n is the 

unit surface normal.  For finite bn this is typically dominated by the term containing the large 

parallel dielectric   bb|| leaving n 0 n || ||J i b E −   .  Other contributions such as from ⊥E⊥ 

are present but typically smaller until bn ~ (me/mi)
1/2 as may be estimated from the electrostatic 

limit noting that E⊥/E|| ~ k⊥/k|| ~ (||/⊥)1/2.  Thus, as bn → 0, Jn is reduced by nearly two orders 

of magnitude from its value when bn is of order unity. Mathematically, the sheath BC, 

t t sh n(z J )= E  with small Jn might be expected to reduce to the perfectly conducting wall BC, 

Et = 0, which would seem benign.  Unfortunately, numerical simulations [Kohno 2016] have 

shown that at least under some conditions, a solution instead develops with finite Et and rapid 

oscillations in the tangential direction, i.e., as Jn becomes small, t becomes large and the solution 

is difficult to resolve with reasonable numerical grids. This occurs because on a curved surface the 

changes in bn induce rapid and dramatic changes in Jn as one moves through the point where bn = 

0. This helps to promote coupling of the incident RF branch (either fast or slow wave) to a short-

scale-length sheath-plasma wave (SPW). [Kohno 2013] A point which merits further investigation 

is whether a local sheath BC is appropriate near the tangency point since currents can flow along 

the surface coupling different points on the surface. 

A second potential issue is that the Maxwell-Boltzmann electron model becomes invalid 

when vte < || where || = bn; see equation (4.27). For small bn we are instead in the fluid 

electron limit, where electrons jitter in the RF fields: the force from E|| is balanced by electron 

inertia. In intermediate cases vte ~ || the electrons can gain energy from the fields, in analogy to 

Fermi acceleration or Landau resonance. [Lieberman & Godyak 1998] 

Calculations of the RF sheath impedance and rectification have not yet properly described 

these effects, and other complications that may arise in the grazing field line limit.  A complete 

and rigorous treatment of this problem seems out of reach at present; it may be satisfactory to 

simply ascertain from experiments or simulations the level of rigor that is required for practical 

modeling applications. 

6.9.3 Low power loading 

 An interesting but somewhat offbeat phenomenon that was analyzed theoretically 

[D’Ippolito 1996] and observed experimentally [Swain 1997] is that of sheath effects on the 

loading (or coupling) resistance of an ICRF antenna at very low powers.  The topic is mentioned 

here for two reasons: it may provide a useful and direct experimental means of assessing antenna 
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designs with respect to RF sheaths; and, the experimental signature may be confused with density 

pump-out by RF-driven convection or ponderomotive force.  

The antenna loading resistance is a routinely measure quantity related to the RF power by 

 rad shrf
L 2 2

ant 0 ant 0

2(P P )2P
R

(V / Z ) (V / Z )

+
= =  (6.33) 

where Prf = Prad + Psh, Prad is the RF power radiated by the antenna into the plasma, Psh is the 

power dissipated in near-field antenna sheaths, Vant is the antenna voltage and Z0 is the antenna 

impedance. Although Prad depends on local plasma conditions such as the plasma density profile 

in front of the antenna, its voltage scaling is Prad  2
antV .  Thus, in the absence of sheath power 

dissipation or nonlinear density modification effects, RL is independent of Vant or RF power. 

  In the original description of low power loading [D’Ippolito 1996], using the capacitive 

sheath model in the immobile ion limit, the sheath power loss was taken to be the ion particle flux 

times the rectified sheath potential, Psh = Zenics<sh>.  The rectified sheath potential is an order 

unity fraction of the peak RF potential sh driving the sheath, and that quantity in turn is 

proportional to the peak RF antenna voltage Vant.  Thus, at low enough Vant, i.e., power, the sheath 

power losses dominate, Prf  Psh  Vant and the loading scales as RL  1/Vant. 

To explore this in a bit more generality, recall from equation (6.14) that the RF power 

dissipated in the sheath is Psh/A = Re ysh|sh|2/2 which at first sight appears to scale like |sh|2; 

however, this does not account for the dependence buried in ysh. From equation (4.22) the real part 

of the admittance (which is dominated by the electrons) is proportional to 1/ = Te/(e sh ).  This 

recovers the scaling Psh  sh  Vant and RL  1/Vant. 

The predicted behavior in RL due to sheath loading was observed in ICRF experiments on 

DIII-D below powers of about 100 kW, with a doubling of RL occurring at about 20 kW. [Swain 

1997] It follows that at very high powers (>> 100 kW for this antenna) the fractional power lost to 

near-field antenna sheaths should be small in total. Nevertheless, sheath power dissipation is of 

considerable significance since that power is often deposited in localized spots on antenna surfaces 

vulnerable to damage. 

From the preceding mechanism we expect the loading to drop as ICRF power is ramped 

up. Other nonlinear mechanisms may also influence the loading and produce a similar signature.  

For example, the ponderomotive force can expel plasma from a small region in front of the antenna 

if the antenna excites strong electric fields with the slow wave polarization; see section 6.7 and 

references therein. Also, RF sheath driven convection can modify the density in front of the 

antenna; see section 6.5. The pondermotive density depletion effect should scale as 2
antV  while 

sheath driven convection velocity should have a Vant scaling. The net effect on density at the 

antenna and the resulting loading is less clear. 
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Although low power loading has not received much attention since its recognition more 

than 20 years ago, it remains as a potentially useful diagnostic tool for comparing near-field sheaths 

with different antenna designs. 

7. Conclusion 

As should be evident from this tutorial, RF sheaths offer an environment which is 

exceedingly rich in physical content. No doubt future research will improve quantitative modeling 

and explore new aspects of RF sheaths that go well beyond the state of the art today.  Topics that 

have not been touched upon, or barely touched upon, in this tutorial include sheaths for which the 

sheath electrons are only partially magnetized (of interest for low magnetic field laboratory 

experiments), multi-species ion effects, collisional RF sheaths, situations in which surface 

interactions contribute to the sheath structure (such as electron emission or sputtering avalanche), 

kinetic electron effects in the inertial and stochastic regimes, the complex topic of grazing angle 

sheaths and RF driven arcs. 

The most essential topics covered in this tutorial, not counting the introductory material in 

the first three sections, are the basic microscale sheath model of section 4.1, the sheath boundary 

condition of section 5.1, and the macroscale RF sheath effects in sections 6.1 to 6.5. 

With regard to ICRF modeling, it will be beneficial to determine a somewhat minimalist 

and practical approach which is nonetheless sufficient to answer the most important questions and, 

importantly, suggest means by which the detrimental effects of ICRF surface interactions can be 

mitigated. Innovations in antenna design and operation, such as optimal phasing, power split 

between current straps, and field alignment of components have already resulted in dramatic 

improvements in ICRF operation. Arguably on specific machines and for specific operational 

scenarios ICRF-boundary interactions may be regarded as a solved problem. However, that is not 

to say that ICRF-edge modeling has matured to the point where it can both understand and quantify 

the detrimental ICRF issues of the past and confidently predict future behaviors under edge plasma 

conditions as yet largely unknown in ITER or a future demo device. 

The modeling and control of RF sheath effects in tokamaks will likely require an integrated 

whole device approach much broader in scope than covered in this paper. In addition to the sheath 

physics covered here, it would include realistic electromagnetic modeling of complex 3D antenna 

structures embedded in edge plasmas which themselves should be modeled self-consistently with 

the presence of RF. This would involve simulation of RF driven convection, and an assessment of 

RF ponderomotive effects in a thin plasma region next to the antenna. Realistic modeling of both 

core absorption and edge and SOL (e.g., coaxial) mode propagation would need to be included. 

RF scattering by turbulence and the effects of RF driven potentials on edge turbulence may play a 
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role.  The problem of global DC circuits may have to be assessed and treated in some fashion.  

Many of the individual pieces of these interactions are known or under development [Bonoli & 

Green 2020; Heuraux 2015; Zhang 2021] It remains to assemble a practical high-fidelity integrated 

model. That task will present a significant challenge and opportunity for the ICRF fusion modeling 

community. 
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Appendix A: Table of notations 

I   the unit tensor 

dc
ˆ ˆˆ , , J   dimensionless parameters, see equation (4.11) 

,n,J u  RF oscillating parts of J, n, u  

  RF plasma relative permittivity tensor 

<…> = d(2)   average over a complete RF cycle 

<> rectified (DC) potential across the sheath 

A surface area 

Ar reflection coefficient, equation (6.3) 

b = B/B background magnetic field direction 

B background magnetic field 

bx = bn = bn = sin  = cos  magnetic field orientation relative to the surface 

cs = (Te/mi)
1/2 cold ion sound speed 

csi = [(Te+Ti)/mi]
1/2 warm ion sound speed 

CW conducting wall 

D =   E displacement vector 
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E⊥, E|| components perpendicular and parallel to b 

ej  unit polarization vector (j = FW or SW) 

Et, t tangential components (in the sheath surface) 

J = Jd+Ji+Je = −iD current density (including displacement current) 

Jdc  DC current flowing through the sheath 

Jn = nJ normal component 

k RF wavenumber 

k0 = /c free space wavenumber 

L domain half-length, see figure 12 

L⊥  characteristic macroscale scale length  

ln  = 3.18 sheath ‘floating’ potential for deuterium 

MB x teMB / (b v )=  , see equation (4.27) 

mj species mass, j = i, e 

n unit surface normal pointing into the plasma 

n0 = ni0 quasi-neutral plasma density at the sheath entrance 

nj species density, j = i, e 

P/A, Prf/A, Pdc/A power per unit area 

qx1, qx0 heat fluxes at the wall, and upstream 

RL antenna loading resistance, equation (6.33) 

Tj species temperature in eV, j = i, e 

u ion flow velocity 

u0 ‘upstream’ ion flow velocity 

V1, V2 oscillating RF plate voltages, see figure 7(a) 

Vant antenna voltage 

vE = B⊥ /B2 EB drift velocity 

vtj species thermal velocity, j = i, e 

x direction normal to the sheath, x = 0 is the wall 

x1, ni1,J1 … values at the left plate, figure 12, x1 = 0 

yd, yi. ye displacement, ion and electron admittances 

ysh = 1/zsh sheath admittance parameter 

yw = 0n  k wave admittance parameter, equation (6.5) 

Z ion charge 

Z0 antenna impedance, equation (6.33) 

zsh sheath impedance parameter 

zw = 1/yw wave impedance parameter 

em ~ c/pe  slow wave characteristic EM scale length 
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es ~ (me/mi)
1/2/k|| slow wave characteristic electrostatic scale length 

 sheath width, see equation (2.7) 

 electrostatic potential 

0 ‘upstream’ or sheath entrance potential 

rf RF amplitude 

sh RF voltage drop across the sheath 

e electron particle flux 

n particle flux projection normal to the surface 

e = eB/me  electron cyclotron frequency 

i = ZeB/mi  ion cyclotron frequency 

i = c/pi  ion skin depth 

se secondary electron emission coefficient 

⊥ ||,  components of  , see equation (3.2) 

 = t RF phase 

d = (0Te/nee2)1/2  Debye length 

d0 = (0Te/n0e2)1/2  Debye length at sheath entrance  

 = vte/[(2)1/2cs] = [mi/(2me)]1/2 see equation (2.2) and (4.9) 

 magnetic incidence angle, see figure 6(b) 

e  thermal electron gyroradius 

i  thermal ion gyroradius 

s = cs/i  ion sound radius 

 = zshyw sheath-wave coupling parameter, equation (6.4) 

 RF frequency 

pe = [nee2/(me)]1/2  electron plasma frequency 

pi = [niZ
2e2/(mi)]

1/2  ion plasma frequency 

 = esh/Te dimensionless RF amplitude 

p ~ 
2mv / 2  ponderomotive potential 

 

Appendix B: Table of acronyms 

BC boundary condition 

DC direct current (also used in the sense of DC voltage) 

EM electromagnetic 

FW fast wave 

HFS high field side 
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ICRF ion cyclotron range of frequencies 

LH lower hybrid 

PIC particle-in-cell (model) 

RF radio frequency 

SOL scrape-off layer 

SW slow wave 
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