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Abstract  

Understanding the responsible mechanisms and resulting scaling of the scrape-off layer 

(SOL) heat flux width is important for predicting viable operating regimes in future tokamaks, 

and for seeking possible mitigation schemes. In this paper, we present a qualitative and 

conceptual framework for understanding various regimes of edge/SOL turbulence and the role of 

turbulent transport as the mechanism for establishing the SOL heat flux width.  Relevant 

considerations include the type and spectral characteristics of underlying instabilities, the 

location of the gradient drive relative to the SOL, the nonlinear saturation mechanism, and the 

parallel heat transport regime. We find a heat flux width scaling with major radius R that is 

generally positive, consistent with previous findings [J. W. Connor et al., Nucl. Fusion 39, 169 

(1999)].  The possible relationship of turbulence mechanisms to the neoclassical orbit width or 

heuristic drift mechanism in core energy confinement regimes known as low (L) mode and high 

(H) mode is considered, together with implications for future experiments.   

 
PACS: 52.55.Fa, 52.55.Rk, 52.35.Ra. 
Keywords: tokamaks, power exhaust, edge turbulence 
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I. Introduction 

Handling the exhaust of plasma energy from fusion-relevant magnetic confinement 

experiments poses an important challenge to the fusion community.  In steady state the power 

leaving the machine across the separatrix must equal the total input plus fusion generated power.  

As fusion-relevant magnetic confinement experiments mature, the powers involved become 

large.  At the same time there is an economically driven motivation to keep experimental 

dimensions as small as possible.  These factors generally conspire to create the potential of large 

power fluxes on divertor or other material surfaces, a tendency which is already troublesome for 

the ITER tokamak,1-3 and which significantly impacts compact high-power density devices such 

as spherical tori. 

The power density P/A on the load bearing surface is determined both by the net power P 

and the “wetted” area A.  Clever divertor designs4-7 attempt to maximize A through increasing 

the number of divertor legs, employing flux expansion in the divertor, moving the divertor to 

large major radius, and tilting the divertor plates while minimizing P by encouraging divertor 

detachment and radiation of power by the plasma before it reaches the plates.  In the simplest and 

most severe case where plasma energy flows unimpeded along the field lines to the divertor, the 

area A is proportional to 2R q (times a flux expansion factor) where q is the radial width of 

the heat flux channel emerging from the midplane region of the torus and R is the major radius.  

Radiation in the SOL and divertor to mitigate the plasma heat flux, and turbulent spreading of q 

in the divertor or divertor legs are both highly desirable.8  Nevertheless, the midplane  q 

remains a fundamental dimension in the problem and is the main subject of this paper. 

It has long been thought that the SOL width is determined by competition between 

parallel transport (i.e. along the magnetic field B) and cross-field turbulent transport.9-13 Various 

theories for edge and SOL instabilities have been proposed and employed to give estimates of 

turbulent diffusion coefficients.  Balancing these estimates against collisional parallel heat flow 

resulted in a variety of predictions for the SOL width.  A great number of these theories were 

reviewed in the late 1990s in an article by Connor.13  Interest in this problem has grown in the 

intervening years.  The experimental database is much improved and nonlinear edge-SOL 

turbulence codes have been applied to the problem.  Both have provided additional insights into 

the underlying physics and have helped to motivate the work described here.   

Following the treatment in Ref. 13, here we also balance parallel and perpendicular 

transport in the SOL to determine the SOL width; however, there are some significant 

differences in the present approach.  In addition to locally-driven turbulent transport, a new type 

of mechanism, distributed transport (related to turbulence spreading) is considered in our paper.  
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Also, motivated by theoretical progress in edge turbulence, the treatment which follows 

explicitly considers the role of mean and Reynold’s driven sheared flows in turbulence 

saturation. Our paper compares these turbulence models with the latest experimental data, in 

particular the H mode data discussed next.  Finally, the turbulence mechanism is contrasted with 

a recently proposed drift-orbit mechanism, which is described subsequently. 

An international experimental effort to characterize q in diverted high-confinement (H) 

mode discharges was carried out,14-21 and the resulting database has been analyzed in detail.22  

This database yields a nearly linear inverse dependence on plasma current, i.e. q  1/Ip with 

rather weak dependences on other parameters.  While high-performance requires operation in H 

mode, plasma startup generally passes through an Ohmic or low confinement (L) mode phase 

which can be wall-limited rather than diverted.  Experimental investigations of q and its scaling 

under these conditions is also available.19,23-26  A weaker than inverse linear dependence on Ip 

has been reported for these cases, and other parametric dependences also enter.  In general, 

limited L mode discharges produce broader SOLs with larger q. 

Advances in the experimental characterization of the SOL width have been paralleled in 

the theory and simulation community by progress in understanding edge and SOL turbulence. 

Many groups worldwide have been involved in this work, over the span of at least several 

decades.  While a comprehensive review of edge turbulence is well beyond the scope of this 

paper, some examples of relevant work may be found in Refs. 27-37 and references therein. Of 

particular note in the context of boundary turbulence in divertor geometry are simulations using 

BOUT,27-30 an electromagnetic three dimensional  fluid turbulence code, which encompasses 

both the confined edge plasma and the SOL.  The studies mentioned in this paragraph were not 

focused specifically on the SOL width, but they have shed valuable insight on the nature of edge 

and SOL turbulence, the characterization of transport fluxes, nonlinear saturation mechanisms, 

etc. which are important background to the material which follows in this paper. 

Turning specifically to the modeling of q and its scaling, the earliest attempts at 

nonlinear simulations of the SOL width used reduced fluid turbulence models, such as those 

embodied in the ESEL38 and SOLT39 codes.  These models follow filamentary interchange-type 

structures in the edge and SOL by time-advancing dynamical equations in the two-dimensional 

(2D) cross-section perpendicular to B, typically at the outboard midplane.  Parallel dynamics are 

approximated by analytical closures.40,41  These reduced models were able to qualitatively 

capture many of the scalings that were observed experimentally, and generally produced SOL 

widths that were comparable (within a  factor of two or so) to experimental measurements.42-45  

More recently, three dimensional fluid turbulence models have been employed to model q for 

limited L mode plasmas.46-48  Insights gained from these simulations have enabled some 

significant advances in understanding the theoretical basis for the scaling of q under these 
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conditions, and some very favorable comparisons with experiments have been achieved.46-48  

Although an inverse-type of dependence on Ip was obtained in the modeling of selected 

discharges using the SOLT and ESEL codes,42,44 none of the 2D or 3D fluid simulation efforts 

have so far been able to satisfactorily explain the experimentally observed Eich scaling22 (see 

following) for q ~ 1/Ip in H mode discharges.  

In contrast to turbulent transport, an entirely different mechanism which has its origins in 

the neoclassical ion orbit width has been very successful in explaining the Eich scaling.  In order 

of magnitude, this “heuristic drift” (HD) model49 produces a width q ~ qs where q is the edge 

safety factor and s is the ion sound radius. Given plausible arguments for determining the 

separatrix temperature, which in any case is weakly dependent on machine parameters, the qs 

result gives both a 1/Ip scaling and absolute widths close to experimental observations.  Particle-

in-cell (PIC) simulations designed to capture orbit width effects on the SOL began with the 

XGC-0 code50 (for 4D gyro-kinetic torodially symmetric modeling with specified background 

diffusion coefficients) and already noted an inverse scaling with the poloidal magnetic field51 

Studies are continuing with XGC-152 (for 5D gyro-kinetic simulations including turbulence).  

Recent XGC-1 results53 are consistent with q ~ qs in present day machines but the competition 

and/or interaction of turbulence and orbit width effects is not yet clear. 

Because both orbit-width and turbulence based theory models seem relevant to 

experimental observations, a deeper understanding of the theoretical basis is needed, especially 

for the turbulence mechanism which is inherently complex and regime dependent.  The goal of 

this paper is to construct an overarching qualitative and conceptual framework for understanding 

edge/SOL turbulence with respect to setting q.  As such, throughout the paper the approximate 

equality sign  will frequently be used in conjunction with order of magnitude dimensional 

arguments. Order-of-unity factors are generally not retained, and numerical accuracy is not 

implied.  The focus is rather on scalings and mechanisms.  In Sec II a physical basis for estimates 

of the SOL width in various regimes is presented. Specific scaling results are presented in Sec. 

III.  With this in hand, in Sec. IV we speculate on the competing roles of turbulent transport and 

orbit width effects as the mechanism for establishing the SOL heat flux width in present day and 

future larger major radius machines.  Finally, conclusions are summarized in Sec. V. 

II. Turbulent SOL width mechanism 

A. Basic equations 
The starting point for examining turbulence as the mechanism for establishing the SOL 

width is the steady-state power balance equation in the SOL, namely 0 q  where q is the 

heat flux. In order of magnitude therefore 
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||

q L
q

q  (1) 

where L|| is a parallel scale length to be defined subsequently. For the turbulence-driven 

perpendicular heat flux in the near-separatrix region we estimate 

 p~v~q x  (2) 

where <..> is a time and poloidal (y) average, x is the radial direction and, for any quantity h,  h
~

represents its perturbation with phase variation in space x and time t given by exp(ikxit).  

Here p = nT is the pressure and xv~ the turbulent radial velocity.  Assuming E×B turbulent 

convection (note that any contributions with adiabatic phase  ~
p~  do not contribute to q) 

  /pv~ip~ x  (3) 

and taking the time average p~v~x = Re[ p~v~x ]/2 one obtains 

 
p

2

2
x pv~

q



  (4) 

Here  is assumed to be in the plasma drift frame, the radial pressure gradient is p/pp  with 

p the pressure gradient scale length, and = Im() is the instability growth rate. Equation (4) is 

equivalent to assuming turbulent diffusion, which is plausible for estimation near the separatrix, 

but known to be a poor description of transport in the far SOL, where blob-filament convection 

dominates.40,41  (Nevertheless, in the blob paradigm for curvature driven interchange convection 

we would estimate  ~  ~ vb/b where vx ~ vb the blob speed, and p ~ b is the blob radius, so 

Eq. (4) is still sensible, yielding q ~ pvb for the transport of each blob filament.) 

A significant caveat in going from Eq. (2) to Eq. (4) is that the given estimate is based on 

linear phase relationships; however, nonlinear-induced changes in cross-phase between xv~ and 

p~  in Eq. (2) can influence transport.  For interchange modes, where the linear cross-phase 

maximizes the transport flux, Eq. (4) should be viewed as a reasonable upper limit.  Although we 

will proceed with Eq. (4), an important future task will be investigation of the nonlinear cross-

phase and comparison of 1/ with the correlation time for the modes responsible for setting the 

SOL width, using simulations in combination with experimental data. 

For the parallel heat flux in Eq. (1) we employ 

 s|| gnTcq   (5) 
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where cs = (Te/mi)1/2 is the sound speed, T  Ti  Te,  g is a dimensionless collisionality regime 

dependent factor, and n and T are midplane values. In the sheath limited regime, where n and T 

do not vary greatly along a field line, g is the sheath energy transmission factor54 typically g  6, 

while in the conduction limited (highly collisional) regime g  <3.2 (mi/me)1/2 vte/(eL||)>|| 

where vte is the electron thermal velocity, e is the electron collision frequency and L|| is a 

parallel scale length which we estimate here, and in Eq. (1), as L||  qR where R is the major 

radius of the torus. In the heuristic expression given for g in the conduction limited regime, 

<…>|| represents an appropriately weighted field line average.  Note that the variation of n and 

T, hence collisionality, along the field line can be large in the conduction limited regime.  In 

practice g is often estimated from a two-point model;54  more accurate evaluation would require 

a two-dimensional transport code. 

Collecting terms, the heat flux width in the SOL can be expressed as 

 
p

2
s

2
x

q
gc

v~qR




  (6) 

To make further progress it is necessary to provide specific estimates for the typical instability 

growth rate  and frequency , and the saturation level 2
xv~ .  Additionally the interpretation of q 

and p requires some discussion. 

The major steps, or additional physical inputs, in going beyond Eq. (6) can be categorized 

as follows: 

 types of instabilities 

 radial wave-number and eigenfunction scale size 

 saturation mechanisms 

 types of transport 

These will be treated in the sections which follow. 

B. Types of instabilities 
In this paper, we consider three different types of instabilities which are commonly 

thought to be relevant to the near-separatrix region:  instabilities of the curvature-driven 

interchange type, collisional drift wave (DW) instabilities and flow instabilities such as Kelvin 

Helmholtz (KH).   

The characteristic growth rate of ideal curvature-driven interchange modes is 

 
2/1

p

s
mhd

)R(

c


  (7) 
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with |Of course, by tokamak design, ideal interchange modes are stable on closed field 

lines, but fast resistive modes, even at modest k values, such as in the case of resistive X-point 

modes,27,55 approach this growth rate, and Eq. (7) is also characteristic of the maximum growth 

rate of interchange modes in the SOL.56,57  We consider typical wavenumbers ky for some of 

these cases next. 

The dispersion relation for fast resistive modes (see e.g. Ref. 55 and refs. therein) is given 

by 

 0
i

2
mhd

2
2
a 





 (8) 

where 222
a

2
a

2
||

2
a R/qvvk  , va is the Alfven velocity and   4/ck 22

||  2
e

2
ek51.0   .  

Here || is the Spitzer conductivity, k and k|| refer to the wavenumber components 

perpendicular and parallel to the background magnetic field respectively, c is the speed of 

light,e is the electron Coulomb collision frequency, and e = c/pe is the electron skin depth.     

In the strongly resistive limit  >> one estimates mhd~~   provided that 
2
amhd   .  The smallest k for which this is valid is given by 

 
  2/1

s
4/3

4/1
p

2/1

e

e
2/1

emhd

a

e qR

1
k





















  (9) 

where s = cs/i. For conventional resistive modes, in limiter (i.e. non-X-point) geometry, this 

requires large ky ~ k.  In divertor geometry,  k varies strongly along the field lines and is 

greatly enhanced in the X-point region by magnetic shear. Consequently, fast resistive instability 

for outer midplane values of ky << kis possible. 27,55  

Another characteristic value of ky arises from considering ion diamagnetic effects. which 

modify the 2 term in Eq. 8 to )( i  where diyi vk and vdi  css/p is the ion 

diamagnetic drift velocity.  Thus diamagnetic effects modify curvature driven interchange type 

modes when ky is of order 
 dimhdi v/k   (10) 

Turning now to the electrostatic collisional drift wave, the dispersion relation is (see e.g. 

Ref. 39 and refs. therein) 

 0)k1(
ki

e
2
s

2

dw

2
s

22






  (11)  

where n/nck ssye   kycss/n and 

 
e

2
te

2
||

dw
vk2


  (12) 
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When the effective value of k|| is specified by geometry so that dw is given, then the growth rate 

maximized over k is 

 
2
te

2
||

e
2
e

dw

2
e

dw
vk84







   (13) 

and Re( e  provided dw << e .  At peak growth, to within factors of order unity

.1~k s  

Finally KH modes can be driven unstable by sheared E×B flows. KH modes are 

intrinsically non-local; their growth rate vanishes in the quasi-local limit. A minimal electrostatic 

model of the KH mode in slab geometry, (see e.g. Ref. 58) results in the eigenvalue equation 

 0
~

vk
~

)k)(vk( yy
2
y

2
xyy   (14) 

where vy(x) is the prescribed E×B flow, vy = dvy/dx, and ~ is the perturbed electrostatic 

potential. In order of magnitude, x ~ Eyx /1~k~k  ,  EEyEy /vv~  where E is the 

scale length of vy and the radial electric field. A more careful analysis, using a tanh-type flow 

profile for vy(x) shows that  at maximum growth vEy/E and kyE ~ 0.4. 

C. Radial wave-number and eigenfunction scale size 
Assuming that ky has been chosen to maximize one can then estimate kx, and the scale 

size of the radial structure.  It is useful to consider three cases for ky and corresponding estimates 

for kx, defined as: quasi-local modes with kyp >> 1, non-local (i.e. “global”) modes with kyp 

~ 1 and barrier-limited modes with kx ~ /Lx, which are discussed in detail below.  The quasi-

local case is of obvious interest for high-k modes such as conventional resistive ballooning 

modes and collisional drift waves. In the quasi-local regime, one can expand the local growth 

rate about the point of maximum growth to obtain a parabolic well equation, from which it is 

found 

 y

2/1
y

x k
k

~k 









 (15) 

where  is again the relevant scale length of the driving gradient. The quasi-local regime has 

been discussed for conventional resistive ballooning modes in Ref. 46, so further details will be 

omitted here. 

In contrast, when ky ~ 1/, the inequality in Eq. (15) breaks down and the result is a non-

local mode with kx ~ ky ~ 1/In steep gradient cases that occur in the edge and SOL, non-local 

modes are of great importance: frequently there can be no significant separation in scale size 

between fluctuations that are important for transport and gradient scale lengths. 
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In SOLT code simulations, it is sometimes found that the radial extent Lx of the dominant 

non-local modes in the edge and separatrix region is limited to be significantly smaller than that 

of the driving gradient, i.e. Lx < p.  These are the barrier limited modes referred to earlier. One 

example is for modes which peak near a point of zero flow shear.  Then the flow shear profile 

can determine the mode’s radial scale length.  Topology changes at the separatrix as well as 

magnetic shear effects associated with an X-point can also affect and limit the radial mode 

structure. Another example occurs for interchange-type modes penetrating into the core region.  

As the background plasma profiles become less collisional, electron adiabaticity (proportional to 

dw) enforces T/
~

en/n~  , i.e. the density and electrostatic potential fluctuations are 

constrained to be in-phase, in contrast to their preferred  phase relationship from interchange 

physics.  By demanding that   ~/k dw
2
s

22  in Eq. (11) and employing Eq. (12) it can be 

seen that this adiabaticity effect creates a radial barrier for interchange modes when 
2
s

2
e

2
te

2
|| k/vk   . 

D. Saturation mechanisms 
In this paper we consider three different types of saturation mechanisms: wave-breaking 

(equivalent to pressure gradient modification), sheared flow generation by Reynolds stress, and 

mean flow suppression. 

Wave-breaking occurs when the perturbed flow xv~  is just large enough to overtake the 

phase velocity of the wave. 

 1
v~k xx 


 (16) 

In most cases, this condition corresponds to pressure gradient modification,37,39 i.e. the 

perturbed pressure gradient is comparable to the mean pressure gradient driving the instability 

 
p

x
p

p~k


  (17) 

The two forms of saturation are equivalent when the pressure perturbation is dominated by E×B 

convection, i.e. Eq. (3).  

It also turns out the two forms of saturation are equivalent when one considers 

instabilities of the drift wave type.  In that case the pressure perturbation is obtained from an 

adiabatic relation  ~
nep~ .  Employing this in Eq. (17) with B/c

~
ikv~ yx   expresses the 

pressure gradient modification condition as xx k/v~   where pyss /kc  .  But for drift 

waves    so Eq. (17) again reduces to Eq. (16). 
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The second saturation mechanism is sheared flow generation by Reynolds stress.59,60 

Here we adopt the condition that instability is suppressed when the flow shearing rate exceeds 

the nominal linear growth rate of the instability.  

 yv  (18) 

where  = d/dx = x. The sheared flows are generated by Reynolds stress and in steady state 

balanced by dissipative losses 

 yfyxxyt vv~v~v   (19) 

where f is the flow damping rate. We estimate 

 
Ef

yx
y

v~v~
v


  (20) 

where E is the scale length of the resulting vy flows.  Combining with Eq. (18), assuming 

electrostatic fluctuations with B/c
~

ikv~ yx   and B/c
~

ikv~ xy   the saturation condition for 

sheared flow generation by Reynolds stress is 

 
 2

Efy

2
xx

k

v~k
 (21) 

Note that this mechanism causes saturation at a lower amplitude than wave-breaking when 

 yx
2
Ef kk .  Thus, for non-local modes where kx ~ ky ~ 1/i.e. all spatial scales are 

comparable, the Reynolds mechanism will enter at a lower amplitude than wave-breaking when 

f . 

In H mode plasmas, the contemporary paradigm is that instabilities are suppressed by 

mean flow shear that arises through ion diamagnetic drifts vdi.61-64  We apply Eq. (18) with vy = 

vEy and estimate from the radial force equation that mean E×B and ion diamagnetic flows 

balance, vEy  vdiy.  In order of magnitude, the condition on p to suppress an instability with 

growth rate  is div or 

 
2
p

ssc




  (22) 

A particular case of interest is that of stabilizing curvature-driven interchange (or fast resistive) 

modes, for which Eq. (7) applies.  Then the condition for H mode-like suppression of transport 

(i.e. a rough condition for H modes) can be written in the form 
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 3/2
s

3/1
p R   (23) 

E. Types of transport 
We assume that transport is ultimately caused by turbulent convection of plasma across 

the field lines due to the local turbulent E×B drifts. However, the local E can arise either from 

local instabilities, or in some circumstances from instabilities driven at “remote” locations, e.g. 

due to a type of turbulence spreading.  The sketch in Fig. 1 illustrates the concepts. 

 

Fig. 1 (color online)  Sketch of the radial profiles of the pressure (red), a 
non-local eigenmode (black, labeled N) and a quasi-local eigenmode 
(green, labeled Q).  The spatial regions for evaluating p and q in the 
distributed case are as indicated. The vertical dashed line is the 
separatrix. 

 

For a quasi-local mode in the SOL, the instability is driven by gradients in the SOL 

which is where we wish to calculate gradients, i.e. to a first approximation we can set p = q.  

This limit is called compact.  Quasi-local compact descriptions based on a variety of SOL 

instabilities characterize most of the SOL width theories.13,46 

In contrast, a non-local mode can be driven by gradients in the pedestal region but affect 

transport elsewhere.  The mode’s associated electric fields extend into the SOL either because of 

its broad linear radial mode structure, or because of non-linear correlations (e.g. from induced 

blob propagation or separatrix-spanning convective cells42).  This case is called distributed and 

we assume that p is given and q is to be calculated.  In H mode plasmas, p is assumed to obey 

Eq. (22). 

Several simulations of H mode plasmas using the SOLT code are consistent with the 

notion of distributed transport as the mechanism for setting the SOL characteristics.  An example 

is shown in Fig. 2 for the simulation of NSTX65 H mode discharge #138847.  The time-averaged 

pressure profile from the simulation, shown in Fig. 2a), has an inflection point near x = 2cm.  

The total flow v = vE,y vdi,y is much smaller than |vE,y| or |vdi,y| individually; hence, vE,y  

vdi,y and it follows that there will be a zero in the shearing rate vE,y near the ion pressure 

inflection point.  In the vicinity of this zero shear point, where  |vE,y|< mhd¸curvature driven 
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modes can create large scale turbulent eddies.  These meso-scale structures convect hot plasma 

)n~(  along contours of from the closed field line region into the SOL, as shown in Figs. 3a) and 

b).  Normalized fluctuations )n/n~(  in Fig. 3c) show blob structures propagating into the far 

SOL, as routinely seen experimentally by gas puff imaging.66   More details of this simulation 

will be presented elsewhere.  For present purposes we note that these simulations employ core 

particle and heat sources of the type described in Ref. 39.  These sources restore the profiles to 

reference profiles in the core region x < 0, where the separatrix is at x = 0, but are gradually 

turned off as the separatrix is approached and are strictly zero in the SOL, x > 0.   In the SOL, 

parallel loss terms in the SOLT code provide a physical, albeit reduced-model, description of 

sink terms. This allows the near separatrix profiles and SOL width to be determined by the 

turbulent dynamics alone, while imposing a “soft” boundary condition on the core profiles that is 

chosen to match the measured profiles in a given experiment. 

Other recent SOLT simulations45 of discharges in NSTX provide additional validation of 

the concept of distributed transport and of the inverse relationship between  p and q expressed 

by Eq. (6).  In these simulations, a pre-lithium NSTX discharge with steep pedestal profiles 

(small p) was compared with a post-lithium discharge where the pedestal profiles were much 

more gentle (large p).  In qualitative agreement with experimental observations, the simulations 

showed that small p corresponded to larger  q, i.e. the midplane SOL width was reduced in the 

post-lithium discharge.  In SOLT, we interpreted the reduced SOL width as resulting from more 

weakly driven turbulence in the large p case. In this type of simulation, because of the artificial 

sources discussed in the preceding paragraph, p in the pedestal region is effectively an input, 

but q in the SOL, being based solely on turbulent transport, is an output. A more complete and 

predictive treatment would involve turbulence simulations of the entire pedestal region as well as 

the SOL, but this is beyond the scope of the simulations discussed here. 

III. SOL width scaling 

A. Scaling examples 
Using the basic concepts described in the preceding sections, it is possible to derive 

scaling laws for q in various regimes.  The procedure is best illustrated by considering a specific 

case. 

A suitable example is that of non-local barrier-limited interchange modes, saturated by 

wave-breaking  in the distributed transport case.  Starting from Eq. (6) we apply the wave-

breaking estimate for xv~  given by Eq. (16), take kx ~ /Lx and  employ the curvature-driven 

interchange growth rate scaling of Eq. (7) to obtain 
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Fig. 2 (color online) SOLT simulation results showing a) the mean ion pressure profile, b) 
comparison of the ExB shearing rate and the ideal MHD growth rate vs. distance from the 
separatrix, x = 0.  Also indicated is the smaller drift wave growth rate dw from Eq. (11) 
optimized over ky. 
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If the transport regime were changed from distributed to compact, then we would set p = q and 
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B. Results 
An abbreviated notation for the various regimes is given in Table 1. Clearly a large 

number of combinations are mathematically possible, some more physically interesting than 

others.   In Table 2 the resulting scalings for several different combinations are given. 
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Fig. 3 (color online)  SOLT simulation of distributed transport in H mode: a) radial profile 
of the turbulent particle flux vs. distance from the separatrix, b) contours of electrostatic 
potential for a snapshot in time, c) density fluctuations and d) normalized density 
fluctuations at the same time. The separatrix is located at x = 0.  Note the decrease in  
for x > 0 due to SOL parallel losses competing with transport. 

 

 

Instability Localization Saturation Transport 

interchange (I) quasi-local (Q) wave-breaking (W) compact (C) 

drift (D) non-local (N) Reynolds flows (R) distributed (D) 

flow (F) barrier (B) mean flows (M)   

 

Table 1.  Abbreviated notation for the types of instabilities, and the 
regimes of localization, saturation and transport.  One entry is picked 
from each column, e.g. I-BWD for the example illustrated in the text. 

 

Although no general proof is apparent, it is evident from Table 2 that positive explicit 

scaling with major radius R (i.e. R to a positive power) is prevalent.  The reason may be traced to 

the L|| or qR scaling originally present in Eq. (6) which typically cannot be completely 

overwhelmed by other factors.  For example, the interchange growth rate introduces a weaker 
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R1/2 variation in the denominator leaving a net positive scaling of R1/2.  In the compact regimes, 

the p in the denominator is equal to and combined with the q being solved for, which changes 

the power of the R in the final scaling, but not the fact that the scaling is positive.  There is the 

possibility of implicit R scalings in some of the other quantities; however, the explicit positive R 

scaling is very significant when considering the extrapolation of mechanisms for q to future 

large machines. 

IV. Discussion 

A. SOL width regimes 
Full simulations of individual cases for different profiles and parameters would be 

required to determine the dominant instability and the corresponding relevant scaling law from 

Table 2.  While this is well beyond the scope of the present paper, it is possible to make some 

speculations about the relationships between several important regimes.  A diagram illustrating 

the concepts is shown in Fig. 4.  In the diagram, for illustration, we take the ever-present 

curvature drive as the instability mechanism.   

This diagram has some superficial similarities to Fig. 1 in the paper by Rogers et al.,31 in 

that both diagrams consider L and H  mode regimes. However, Fig. 4 is not intended to be a 

predictive diagram for the L-H transition.  Rather the intention is only to illustrate the effect of L 

and H mode parameter regimes on the SOL width, an issue that was not considered in the local 

flux tube model of Ref. 31.  Note that Eqs. (22) and (23), employed here to define the H mode, 

are consistent with the discussion in Ref. 31 about the role of transport suppression by sheared 

E×B flows, arising in the final H mode state from ion pressure in radial force balance.  This 

picture is also consistent with more recent models that consider the dynamics of the L-H 

transition.61-64  Finally, the ideal instability boundary is indicated qualitatively in Fig. 4 as a 

boundary of interest: it may have implications with respect to “stiff” transport (i.e. a critical 

gradient beyond which transport becomes very large) near the separatrix and also to the density 

limit. These are topics to which we will return.  A somewhat different density limit mechanism 

and boundary is discussed in Ref. 31. 

Starting in the L mode regime, scale lengths such as E are long and mean flow 

suppression effects are assumed to be negligible, i.e. vE < mhd.  These cooler plasmas in the 

vicinity of the separatrix are generally well described by quasi-local resistive instabilities and 

give rise to a scaling like I-QWC in Table 2.  This is because local instability is possible 

everywhere radially and hence compact transport results.  Owing partly to the rather large power 

of R relative to s in this scaling, the resulting L mode q is typically rather large, in the several 
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cm range.46-48 For these compact modes, q = p and hence L modes exist below the sheared 

flow suppression threshold estimate given by Eq. (23).   

In H mode plasmas, the steeper gradients implied by Eq. (23) result in sheared flow 

suppression of the turbulence, and as discussed in Sec. II E, can result in barrier limited modes 

which exhibit distributed transport.  Examples in Table 2 are the I-BRD, I-BWD and F-BWD 

cases. These scalings typically produce rather smaller qthan their L mode counterparts. 

When predicted turbulent SOL widths exceed the HD neoclassical estimate, qs, it is 

reasonable to assume that turbulence is the dominant mechanism, although a two-scale-length 

SOL might also be possible in this case.26,67  In the opposite limit where the turbulence-

generated width is less than the ion orbit excursion, q < qs turbulence is likely irrelevant, or at 

least, its effects must be computed in the context of neoclassical orbit physics.  This limits the 

rightmost extent of the diagram in Fig. 4. 

For a given p increasing separatrix pressure will ultimately result in exceeding the ideal 

MHD stability limit for electromagnetic ballooning modes, mhd > crit ~1, as indicated in the 

diagram. Resulting turbulence saturation levels are very high and may reasonably be expected to 

result in destruction of the SOL, i.e. ideal MHD imposes a hard limit beyond which operation is 

not possible.  If this is the case, ideal modes might provide a kind of stiff transport that sets the 

pressure gradient at a critical value near the separatrix.68  It is a matter of current debate whether 

high performance H mode plasmas always operate near the SOL mhd limit,69 or only do so 

when also near the density limit.70,71  Indeed, Goldston has pointed out that combining the 

estimate p  qs with  mhd  q2R8p/(B2p)  1 applied at the separatrix results in a scaling 

that is reminiscent of the Greenwald density limit scaling.70  Although the detailed arguments 

are more complex, the basic idea is that the combination of these two scalings gives a limit on 

the separatrix density 
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The Bs/8Tsep factor scales weakly with separatrix temperature, which can be estimated from a 

SOL power flow model, but in any case is not highly variable, while the B/(qR) ~ Ip/a2 factor is 

akin to the Greenwald scaling.  Taking into account the fact that the Greenwald scaling is for 

core line density, while the present limit is for separatrix density, it can be shown70 that the 

constant of proportionality is also reasonable.  Thus, within the accuracy of heuristic arguments, 

the density and separatrix MHD limits on the separatrix pressure coincide at the right of the 

diagram in Fig. 4. 
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Fig. 4 (color online)  Speculative diagram showing the boundaries of L 
mode and H mode plasmas relative to the separatrix pressure (vertical 
axis) and inverse SOL heat flux width (horizontal axis). 
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Key q scaling Remarks 
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HD qs Goldston heuristic drift model (simplified)49 

 

Table 2.  Scaling results for q in several regime combinations.  The last 
row, a simplified version of the characteristic q for the heuristic drift 
model is given for comparison with the turbulence based models. 
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B. Inter-machine scaling 
Although “order unity” numerical factors have not generally been retained in the 

preceding analysis, it is still important to check the reasonableness of the results quantitatively at 

an order-of-magnitude level.  It is also interesting to speculate on the consequences of any 

trends.  In doing so, however, it should be emphasized that, given the heuristic level of estimates 

in this paper, no claims about absolute accuracy should be inferred.  

Order-of-magnitude estimates are presented in Fig. 5 where the I-BWD and F-BWD 

scaling results from Table 2 are compared with the HD model  and with a fit to a multi-machine 

experimental database due to Eich22 for the inter-ELM phase of H mode plasmas. We show the 

comparison with I-BWD and F-BWD for several reasons: the interchange and flow drive 

mechanisms should be always present in H mode; Sec. II E suggests the barrier limited 

distributed transport mechanism in H modes; and, wave-breaking saturation gives an upper limit 

on the cross-field turbulent transport relative to the Reynolds flow mechanism, and hence an 

upper limit on q.  Furthermore, it can be argued72 that KH turbulence limits the Reynolds-

driven sheared flow that stabilizes curvature driven modes.  In this picture the I-BWD and 

F-BWD models provide upper and lower limits for q.  

The long-dashed black line in Fig. 5 is the multi-machine scaling.  For illustration we 

employ regression fit #15 in Table 3 of Ref. 22 which includes spherical tori (and hence allows a 

significant range in ).  This fit takes the explicit form for q at the midplane 

 42.092.0
p

04.002.0
SOLq BRP35.1    (27) 

where the units are q(mm), PSOL(MW), R(m), Bp(T) and  = a/R. This regression fits the 

measurements in MAST, NSTX, Alcator C-Mod (CMOD), ASDEX-U (AUG), DIII-D, and JET 

tokamaks to within a factor of two or better.  Note that Fig. 5 does not show actual experimental 

data but rather evaluates Eq. (27) at nominal machine parameters. Recent EAST tokamak 

measurements20 (not included in the regression fits of Ref. 22) determined q to be roughly a 

factor of 2 larger than the multi-machine fits.  

Several specialized assumptions have been made in Fig. 5. For the I-BWD and F-BWD 

points, the pre-factor q/g in Table 2 has been set to unity which is reasonable for order-of-

magnitude estimates in a sheath-limited SOL regime. For more collisional conduction limited 

SOL conditions, the illustrated results should be increased by q/g which may be larger than 1.  

For the machine parameters, Bt, Bp, a and R we employ representative (approximately midrange) 

values from Table 1 of Ref. 22.  For the EAST tokamak representative parameters are taken from 

Ref. 20.   The ion charge and mass employed in Fig. 5 are that of deuterium.  The gyroscale s is 

calculated from the total B, using for Te an estimate of the separatrix temperature given by Eq. 
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(7) of Ref. 49, which is based on SOL power flow using a two-point model.  In fact, the 

turbulence results are rather insensitive to Te as can be seen from the explicit scalings.  In Fig. 5, 

no distinction has been made between the radial scale lengths Lx, E, and p; and, p was 

calculated from the H mode condition given by Eq. (23) (with equality). This gives scale lengths 

on the order of a cm for most of the machines, and is meant to apply in the pedestal foot, near the 

separatrix. Finally, for the simplified HD result, we employed the value q = 4 (for q95 at the 95% 

flux surface). 

 

 

Fig. 5 (color online)  Order-of-magnitude estimates for the size of the 
midplane SOL heat flux width in the indicated machines, resulting from 
the mechanisms I-BWD (blue), F-BWD (plum), simplified HD (dashed 
gold), and Eich fit #15 (long-dashed black). 

 

It is reasonable to make several inferences from Fig. 5.  First, as is already well known, 

the HD model (dashed gold curve) even in the simplified form used here, fits existing 

experiments remarkably well.  However, turbulence-based models can also be at least order-of-

magnitude consistent with experimental data.  Additionally, there is some indication that the 

turbulence-based models follow broad experimental trends.  For example, the pronounced dip in 

q for Alcator C-Mod is captured by all the models.  This is not unexpected because both R and 

s are relatively small in C-Mod.  Significant differences between the turbulence-based models 

and the HD model (or the projection of the Eich fit) emerge when applied to ITER.  Finally, it is 

remarkable how closely the F-BWD curve follows the HD and Eich curves for Alcator C-Mod, 

ASDEX-U, DIII-D and EAST parameters.  The level of numerical agreement is almost certainly 

fortuitous, but the agreement of the trends may be significant, either physically, or at least to 

suggest co-dependencies in the multi-machine database. 

æ æ

æ

æ æ æ
æ

æ

à à

à

à à à
à

à
ì ì

ì

ì
ì ì ì

ì

ò
ò

ò

ò ò
ò

ò

ò

MAST NSTX CMOD AUG DIIID EAST JET ITER
0.05

0.10

0.20

0.50

1.00

2.00

l q
cm





Myra, D’Ippolito and Russell    Turbulence and the SOL width 

 21 

Figure 5 presents evidence for the relevance of turbulence as a SOL broadening 

mechanism in non-ELMing (or inter-ELM) diverted H mode plasmas.  More generally, SOL 

turbulence broadening can be considered in other regimes, as discussed in the preceding sections.  

It has already been shown in other work44,46-48 that resistive interchange or ballooning 

turbulence (of the I-QWC type) provides a plausible explanation for q in limited L mode 

discharges.  Consequently, similar L mode comparisons need not be repeated here. 

V. Conclusions 

In summary, we have applied simple heuristic considerations for the turbulent transport 

flux across the separatrix to obtain regime-dependent analytical scaling laws for the midplane 

heat flux width q. These are given for various regime combinations in Table 2. These estimates 

are all based on balancing turbulent perpendicular transport with parallel transport in the SOL. 

An alternative picture, briefly mentioned in connection with Fig. 4 but not otherwise treated 

here, is that the SOL width, at least in some regimes, could be set by a critical gradient 

mechanism, e.g. one which maintains profiles at or near marginal stability to ideal ballooning 

modes.69,70 

In our model, the most important factors determining the regime are the instability type, 

the radial wave-number and eigenfunction scale size, the nonlinear saturation mechanism, and 

the type of transport process. The collisionality of the SOL, i.e. the parallel transport regime, also 

directly impacts the final result for q.   

The concept of distributed transport was illustrated with some simulation results which 

distinguish between the radial location and size of the turbulence driving gradient and the SOL 

responding gradient. The heuristic estimates qualitatively explain some of the SOL width results 

seen in numerical SOLT code simulations of H mode plasmas, in particular, the inverse scaling 

of q with p in the distributed transport regime. Thus, the turbulent SOL heat flux width in L 

mode and H mode plasmas may depend on different transport mechanisms, compact vs. 

distributed, respectively. 

In direct order-of-magnitude comparison with the multi-machine experimental database 

for the inter-ELM phase of H mode plasmas, sample turbulence mechanisms are order-of-

magnitude reasonable, and capture some of the observed trends, as illustrated in Fig. 5.  

However, none of the investigated turbulence models produces a clean q 1/Ip qs scaling.  

The HD (neoclassical orbit width) model does give this scaling and explains existing 

experimental H mode data rather well.  It is tempting to speculate that the turbulence mechanism 

is sub-dominant with the orbit width mechanism, but nevertheless quite possibly present, in the 

H mode plasmas of today’s machines. Further investigations will be required to determine the 
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nature of possible fundamental interactions between turbulence and finite orbit width effects in 

the vicinity of the separatrix.  One aspect of this is the role turbulence could have on the electron 

heat channel in the SOL49 and on ambipolarity in the closed surface region.71   Evidence 

presented elsewhere suggests the importance of turbulence broadening of the SOL in limited L 

mode discharges.24,25 Significantly, in all the regimes examined here, turbulence mechanisms 

tend to give q a positive scaling with R and thus can be relatively more dominant in large 

machines like ITER than the HD model which just depends on s.  If this turns out to be the case, 

it would be a favorable result for reducing the potentially damaging heat flux impacting the 

divertor plates. 

The primary goal of this paper has been to determine scalings for the SOL width under 

various assumptions about the physical processes involved, with an emphasis on turbulence as 

the transport mechanism.  In closing, two caveats about interpretation should be emphasized: (i) 

little significance should be attached to the numerical values of q obtained here (i.e. the scaling 

prefactors) except their rough order-of-magnitude; (ii) the validity of the derived scalings rests 

upon an understanding of the underlying processes for instability drive, saturation, etc. and the 

resulting turbulent transport fluxes, including issues such as the nonlinear cross-phase. This work 

is still very much ongoing and needs validation by both numerical modeling and direct 

comparison with experiments.  It is hoped that the present work will provide a framework for 

further developments towards this goal. 
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