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Abstract 

In ion cyclotron range of frequency (ICRF) experiments in fusion research devices, radio 

frequency (RF)  sheaths form where plasma, strong RF wave fields and material surfaces coexist. 

These RF sheaths affect plasma material interactions such as sputtering and localized power 

deposition, as well as the global RF wave fields themselves. RF sheaths may be modeled by 

employing a sheath boundary condition (BC) in place of the more customary conducting wall BC; 

however, there are still many legacy ICRF computer codes that do not implement the sheath BC. 

In this paper we present a method for post-processing results obtained with the conducting wall 

BC.  The post-processing method produces results that are equivalent to those that would have 

been obtained with the RF sheath BC, under certain assumptions. The post-processing method is 

also useful for verification of sheath BC implementations and as a guide to interpretation and 

understanding of the role of RF sheaths and their interactions with the waves that drive them. 
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1. Introduction 

Ion cyclotron range of frequency (ICRF) waves are commonly used for heating 

and current drive in present day fusion research devices. Because of their flexibility and 

relatively low cost, ICRF systems are expected to play an increasing role in fusion-

relevant plasmas for these applications and potentially others as well [1].   Compared 

with other auxiliary heating and current drive methods, the engineering challenges of 

ICRF systems are relatively minimal; however, a significant physics challenge remains: 

understanding and mitigating edge plasma interactions that are frequently observed in 

high power ICRF experiments [2-12]. 

It is believed that ICRF specific edge plasma interactions are often associated 

with the development of radio frequency (RF) sheaths [13-15]. RF sheaths form where 

plasma, strong RF wave fields and material surfaces coexist. They result in enhanced 

plasma potentials relative to the wall, and therefore they increase the energy at which 

ions strike the surface and sputter impurities [4,8]. RF sheaths can also lead to enhanced 

plasma convection [3,16,17] and surface power deposition [18-20], which may be 

localized and cause material damage or enhanced erosion.  For all of these reasons, RF 

sheaths have been the subject of many theoretical and modeling studies [13-16, 19-30]. 

RF sheaths exist on the scale of a few to a few tens of Debye lengths, much 

smaller than typical RF wavelengths or the global scale of fusion research devices.  

Consequently, it is possible to model an RF sheath on the global scale by means of a 

boundary condition (BC), specifically a sheath BC on the solution for the RF waves [19, 

31,32]. In this paper, we adopt the sheath BC formulation of Refs. [19, 33] which 

provides an effective surface impedance seen by the RF waves, as a function of plasma, 

geometric and RF parameters.  The sheath BC also allows calculation of the “rectified” 

sheath voltage, and total instantaneous sheath voltage available for ion acceleration and 

sputtering, as well as the RF sheath power dissipation which appears as a heat load on the 

surface. 

The goal of this paper is to enable RF sheath calculations from RF wave-fields 

that were obtained under the conducting wall (CW) BC.  The original motivation came 

from the fact that many legacy RF codes still use the CW-BC. It would be useful to have 

a means of obtaining some information, even if approximate, about sheaths from these 

codes. Secondly, as modern codes begin to implement the sheath BC, it will be useful to 

have a method of verification.  The sheath post-processing method described here should 
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address that need. Finally, the post-processing method can be useful for interpretation, 

analysis and as a guide to intuition concerning the role of RF sheaths in a given situation. 

Details of the post-processing method and its testing constitute the bulk of this 

paper. At a high level, we can describe the basic idea as follows.  An observer located at 

the bounding surface of the plasma sees incoming and outgoing waves as well as certain 

field quantities on the surface itself. The relationship of the outgoing waves to the 

incoming waves depends on the BC.  If the incoming waves are not dependent on the 

outgoing waves (an exception would be that of a resonant cavity) then it should be 

possible, given sufficient information collected at the surface under one type of BC, to 

transform that solution to another solution under a different type of BC.  All of the 

required calculations would be local to the surface, and they would assume that under the 

change of BC, the incoming waves would remain unchanged. We illustrate this method 

specifically for the transformation of CW-BCs to sheath BCs, although the method itself 

is really quite general. In order for the post-processing calculations to be semi-analytical, 

we assume that the plasma and geometrical parameters are constant on and near the 

surface. This paper generalizes a previous exploratory attempt along these lines, 

presented in Ref. [34]. That paper was restricted to slow wave polarizations and 

perpendicular incidence of the magnetic field lines on the surface (hence effectively 

unmagnetized sheaths).  Here we consider a general formation retaining both fast and 

slow wave polarizations with application to oblique angle sheaths. 

The plan of our paper is as follows. In Sec. 2 we describe in detail the basic 

equations and method. This includes a brief review of the sheath BC, the equations for 

the incoming and outgoing wave fields near the surface, the method of solution and a 

simple analytic example. Sec. 3 provides numerical verification tests for one dimensional 

(1D) and two dimensional (2D) examples. Results verify both the post-processing method 

and the rfSOL code [20,35] which was used for comparison. A summary and our 

conclusions follow in Sec. 4. Some technical details of the solution of Maxwell’s 

equations and of the sheath BC are given in the appendices. 

2. Basic equations and method 

2.1 Sheath boundary condition 

A sheath BC was derived from a Debye-scale model in Ref. [19] and later the 

results of that model for voltage rectification and RF sheath impedance were 

parametrized in Ref. [33]. A description of the physics contained in this model is beyond 
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the scope of the present paper.  Here, we shall simply quote the mathematical form of the 

sheath BC and regard the sheath impedance parameter zsh as a known input for given 

plasma, geometrical and RF parameters. Specifically, examples in this paper use the 

parametrization [33] ),b,ˆ,ˆ(ẑ n   where ̂ = pi,  ̂ = ipi , bn = sb and  = 

e|Vsh|/Te.  Here the dimensionless quantity ẑ  is related to the sheath impedance 

parameters zsh in SI units by zsh = ẑd/(0pi). Also,  is the applied RF frequency, pi 

is the ion plasma frequency, i is the ion cyclotron frequency, s is the unit normal to the 

surface pointing into the plasma (n is reserved for the RF index of refraction), b = B0/B0 

is the direction of the equilibrium magnetic field, Te is the electron temperature, and |Vsh| 

is the (zero-to-peak) amplitude of the RF wave at the sheath interface. The post-

processing method described in the following does not depend on this particular 

parametrization of the BC: any expression for zsh could be used.  

The sheath BC may be written as 

 )zJ( shntt E  (1) 

where E is the RF electric field and Jn is the total RF current density (particle plus 

displacement current) on the plasma side of the sheath, and the subscripts t and n denote 

the surface tangential and normal components, respectively. Note that when zsh = 0, the 

sheath BC reduces to the usual CW-BC, i.e. the tangential electric field vanishes on the 

boundary. It is sometimes convenient to employ the total displacement vector D =    

which is related to the total current density by 

 JD i  (2) 

where  is the relative permittivity tensor and we adopt the convention that the RF waves 

vary like exp(ikxit). For notational brevity, this phase factor will be implicit in most 

of the subsequent discussion. 

2.2 Equations for the waves 

We begin with a 1D geometry, illustrated in Fig. 1, in which the waves propagate 

in the x direction and encounter a planar surface, in general rotated through an angle 

along the z axis. At the surface, we regard the incoming waves as known, with given 

values of tangential wavevector kt on the surface. (A superposition of kt components 

obtained by Fourier analysis is also permitted.) The RF waves in the source-free 

homogeneous plasma volume obey the Maxwell equation 

 0)(  EEnn  (3) 
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where n = kc/ and  are also specified.  

 

Fig. 1  Geometry for the solution of Maxwell’s equations. The unit normal pointing 
from the surface into the plasma is s, and t1 is the unit vector along the surface in 

the x-y plane. The equilibrium magnetic field direction is b = ex. 

The unknowns in Eq. (3) are the generalized eigenvalues kn (or equivalently nn) 

and the associated eigenvectors E. It is shown in Appendix A that Eq. (3) may be 

rewritten in the form of a generalized eigenvalue problem for kn by splitting it up into the 

two original constituent Maxwell equations for the RF fields E and B. The solution 

provides four normal modes, )m(
nk  and their associated electric field polarization unit 

vectors e(m), m = 1, … 4. The four modes are the fast and slow waves, each with two 

directions of propagation (or evanescence). Thus the total electric field is expressed as  

 
m

)m()m(E eE  (4) 

where the complex amplitudes E(m) are to be determined.  The general set of equations 

coupling E(m)  and the surface field quantities Jn and Bt are 

 n
m

)m()m(
0 JEi 
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
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
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


 ee  (6) 

 nshzz
m

)m()m( JzikE 







 ee  (7) 

 tt
m

)m()m()m(
n

)m( )(kE
1

Bkeks  


  (8) 

Recall that s is the unit normal pointing from the surface into the plasma so that Jn = Js. 

Equation (8) is obtained from k  E = B by dotting with s, multiplying by kn and using 

knBn = ktBt for each of the k(m), E(m) and B(m) modes under the summation. This 



 6 

manipulation is employed for numerical accuracy reasons but also possess an 

aesthetically pleasing symmetry: Jn  sktBt is one “source” term, while the 

complementary quantity  ktBt is the other. 

Here for pedagogical simplicity we have written the equations in Fourier 

component form for the case of constant zsh. An important generalization will be 

discussed subsequently. 

The equation set, Eqs. (4) – (7), may be used to solve for any four of the six 

quantities E(m), m = 1, ... 4, Jn and ktBt given any two of them. Two different sets of 

given quantities and unknowns will be employed for the complete post-processing 

procedure. 

2.3 Solution method 

The post-processing procedure for transforming a CW solution into a sheath BC 

solution is as follows.  

(i)  First, one obtains, from the CW solution, the quantities  Jn,cw and kBt,cw on 

the surface.  

(ii)  Given these quantities, and setting zsh = 0, corresponding to the CW solution 

from which they came, Eqs. (4) – (7) are solved for )m(
cwE , m = 1, ... 4, thus 

determining the incoming and outgoing fast and slow waves incident on the 

surface.  For the sake of discussion, we will regard m = 1, 2 as the incoming 

waves, and m = 3,4 as the outgoing waves. For propagating modes, the 

incoming or outgoing status is determined by the sign of the group velocity. 

For evanescent modes, it is determined by the direction of exponential decay. 

(iii)  Having determined the amplitude coefficients of the incoming waves, which 

are now to be held fixed, the final step is to regard )1(
cwE and )2(

cwE  as source 

terms, and solve for the outgoing waves, the surface current and the 

tangential magnetic field using the sheath BC.  This step therefore employs 

the desired value of zsh, and the solution yields quantities we label as )3(
shE , 

)4(
shE , Jn,sh and kBt,sh. 

The procedure is conceptually straightforward, but is complicated by two issues.  

The first is that zsh, as given in Ref. [33] is a nonlinear function of the RF amplitude on 

the surface.  This means that step (iii) must be iterated, with zsh updated on each iteration 
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until convergence is achieved. Namely, at each iteration the RF sheath voltage is 

determined from 

 shnsh zJV   (9) 

and then = |eVsh/Te| is used to determine zsh = zsh() for the next iteration. For all the 

examples that have been tried in preparing this paper, a simple fixed point iteration 

converges well. 

The second complicating issue is also related to the nonlinearity.  Because the RF 

amplitude in general varies along the surface, zsh is not a constant spatially in a given 

iteration step. This couples the various kt Fourier modes on the surface and means that in 

practice, Eqs. (4)  (7) are in fact replaced by more complicated matrix equations which 

are described in Appendix B. These equations still use the same solution of Maxwell’s 

equations in Fourier space for each of the component Fourier modes, but the modes are 

coupled together. 

Once a converged solution is obtained, the final RF sheath voltage is given from 

Eq. (9). From it, the rectified DC voltage may be calculated from a simple fit [33] and 

also using Jn,sh the RF surface power dissipation per unit area may be calculated from 

 )zRe(J
2

1
ccVJ

4

1
P sh

2
nshn    (10) 

For a flat wall with constant plasma and magnetic field parameters, the preceding  

method is exact (assuming that the modified outgoing waves do not affect the incoming 

waves), as demonstrated in Sec. 3.1. In this case the procedure can be used to verify an 

implementation of the sheath BC in an RF code.  

For a shaped wall, or when there is variation of the plasma or magnetic field 

parameters, the procedure may be invoked in a local sense at each point on the surface, 

and will be valid when the local approximation for the RF waves is valid.  A typical 

sufficient condition is kt L >> 1 where L is the scale length of variation along the surface.  

Later, we will also discuss another limit in which the post-processing method is exact, 

even for a shaped wall. 

2.4 An analytic example 

A simple analytical example, discussed in Ref. [34], is useful for illustrating both 

the procedure and the power of the method.  This example is given for the electrostatic 

limit in the case of a flat wall with normal vector s = ex corresponding to /2 in Fig. 
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1 and background magnetic field B0 = B0 ex. The general solution for an RF wave in the 

electrostatic limit consists of just the incoming slow wave (m = 1) and the outgoing slow 

wave (m = 3). 

 xik)3()3(xik)1()1( )3(
x

)1(
x eiei  kkE  (11) 

where (1) and (3) are the amplitudes of the electrostatic potential. The total potential at 

the wall, taken to be at x = 0, is (1) + (3).  For the CW solution, which is 

presumed to be known, this must be zero hence )3(
cw  =  )1(

cw . Furthermore, in this 

geometry the incoming and outgoing wavevectors will have equal and opposite normal 

components, )3(
nk =  )1(

nk . The resulting normal component of the electric field at the 

wall for the CW case is therefore 

 )1(
cw

)1(
n

)3(
cw,n

)1(
cw,nn ik2EEcw,E   (12) 

The normal current at the surface Jn for the CW case is related to this electric field by 

Eq. (5). This enables the determination of the incoming wave amplitude )1(
cw  in terms of 

Jn,cw completing step (ii) of the post-processing procedure. 

 
)1(

n||0

cw,n)1(
cw

k2

J


  (13) 

Note that )1(
nk  is determined by the slow wave dispersion relation given ky and kz on the 

surface, 

 0kk ||
2
||

2   (14) 

which plays the role of the Maxwell solution in the general case. 

Step (iii) is to use )1(
cw  as the source term for a new solution which retains the 

sheath BC, in particular finite zsh.  The relevant equations are Eqs. (5) and (6) or (7). 

Eq. (8) is not relevant for electrostatics, and Eqs. (6) and (7) are just the tangential 

gradient of Eq. (9) where Vsh = (1) + (3). Holding )1(
cw  fixed and regarding Jn and  

(3) as the new unknowns, the equations to be solved therefore are,  

 n
)3()1(

cw
)1(

n||0 J)(k   (15) 

 shn
)3()1(

cw zJ  (16) 

where )3(
nk =  )1(

nk  has again been used in Eq. (15). Solving for Jn and and then 
forming  Vsh one obtains 
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


1

J
J cw,n

sh,n  (17) 

 
)1(2

)1(zJ shcw,n)3(
sh 


  (18) 

 



1

zJ
V shcw,n)3()1(

cwsh  (19) 

where 

 sh
)1(

n||0 zk  (20) 

This expresses the desired sheath quantities in terms of the input Jn,cw and completes the 

post-processing method in this simple electrostatic model. 

The point of this analytical electrostatic exercise is to illustrate how the process 

works with a concrete example, and to point out several features of the solution which 

also apply to the numerical 2D electromagnetic case. These features are evident from the 

result for Vsh which is usually the main output of interest. The first point is that Eq. (19) 

is a nonlinear equation for Vsh since   zsh is itself a function of |Vsh|. The second point 

is evident from the form of the denominator which displays a resonance at = 1 This is 

the sheath-plasma wave resonance [20,36,37].  Related to this point is the fact that 

Eq. (19) illustrates the different regimes of the wave interaction with the sheath [38].  For  

| << 1 the sheath is in the conducting limit where the sheath voltage is small, while in 

the opposite limit  | >> 1  the sheath is in the quasi-insulating limit. Note that in the 

conducting limit Vsh = Jn,cw zsh; in this case although the equation for Vsh is still 

nonlinear, it does not involve any additional solution of the Maxwell equations: the 

sheath voltage is available directly and exactly from the CW solution and the knowledge 

of zsh. This is one of a few cases in which the post-processing method is exact. 

For future reference, the form of , whengeneralized to arbitrary magnetic field 

angles with the surface, is given in the electrostatic limit as [38] 

 sh
)3(

n0 zks   (21) 

When b and n are collinear, )1(
n

)3(
n kk   but this is not generally true for magnetic fields 

that are oblique to the surface. 
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3. Verification tests 

In this section several verification tests of the post-processing method are 

presented. Verification is obtained by comparing the results of the post-processing 

analysis with results obtained from the rfSOL code [35]. The rfSOL code has within it a 

complete implementation of the sheath BC.  In situations for which the post-processing 

method is exact, agreement with rfSOL may be taken as evidence for verification of both 

the post-processing method and rfSOL itself.  In situations for which the post-processing 

method is approximate, verification tests provide information about the expected 

accuracy of post-processing and reveal the relevant dimensionless parameters controlling 

that accuracy.  

3.1 Test #1: verification with a flat wall 

Verification test #1 is for a flat wall case. It uses the coupled Fourier mode 

approach described in Appendix B and therefore should provide an exact solution of the 

post-processing problem. The 2D geometry for the test is shown in Fig. 2. In the third (z) 

direction the equilibrium is ignorable and a plane wave is assumed. Thus all quantities in 

this analysis are implicitly proportional to exp(ikzzit).  

The plasma and RF parameters for this test are: ne = 6.01017 m3, Z = 1, A = 2 

(deuterium), Te = 10 eV, (Bx, By, Bz) = (0.5, 1.5, 4.) T, kz = 10.8 /m and ω/(2π) = 80 

MHz.  The maximum in y of the antenna current for this case is Kmax = 60 A/m.  Thus 

this case employs oblique angle sheaths in slab geometry with constant plasma 

parameters. Although rfSOL and the post-processing analysis retain both fast and slow 

waves, in this test the antenna dominantly launches an evanescent slow wave. The 

“incoming” branch (i.e. the one that decays as it approaches the wall) interacts with the 

right wall BC and reflects onto the “outgoing” branch which decays away from the wall. 
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Fig. 2 Geometry for verification test #1. The antenna is located at x = 0.47 m and 
the wall is at Lx = 0.5 m. The antenna height in y is Lant = 0.05 m.  The domain is 
periodic in the y direction with box size Ly = 0.4 m. See Ref. [35] for additional 
information about rfSOL. 

 

The steps for this test are as follows: (i) rfSOL is run with the CW-BC at x = Lx; 

(ii) the data for Jn,cw and kBt,cw are passed to the post-processing scripts; (iii) the post-

processing analysis is run and Vsh,pp and Jn,sh,pp are calculated; (iv) an independent run 

of rfSOL is done with the sheath BC to calculate Vsh,rfSOL and Jn,sh, rfSOL; (v) the post-

processing results Vsh,pp and Jn,sh,pp are compared with the rfSOL results Vsh,rfSOL and 

Jn,sh,,rfSOL. 

The result for the conducting wall solution for Dn,cw = i Jn,cw/ along the sheath 

surface as obtained from step (ii) is shown in Fig. 3. The evanescent slow wave launched 

from the antenna impacts the wall above the midplane y = 0.2 m, since the fields 

approximately follow obliquely tilted field lines. In addition to Jn,cw the profile of kBt,cw 

is also passed to the post-processor ; however, kBt,cw does not significantly affect the 

result and is not shown.  
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Fig. 3 The CW solution for Dn along the sheath surface from rfSOL for test #1. 
Real and imaginary parts of Dn are indicated in solid and dashed lines 
respectively. 

 

The next step, step (iii), is the post-processing itself, as described in Sec. 2.3. In 

Fig. 4 the convergence of the solution under the nonlinear iteration is shown. The figure 

represents 12 separate linear post-processing sub-calculations to obtain the final 

nonlinearly converged result.  In this case the initial condition for the first iteration was 

Vsh = 0 and a simple fixed point (Picard) iteration was employed. Convergence to the 

final result is robust and sufficiently rapid. Additional runs (not shown) with an initial 

condition of very large Vsh were also found to converge to the same result at a similar 

rate and in a similar number of iterations. 

 

   

Fig. 4 Convergence of the nonlinear iteration for test #1 with the initial condition 
Vsh = 0. The plot shows the maximum value of |Vsh(y)| for each iteration step. 
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Step (iv) is to generate an independent result using the sheath BC in the rfSOL 

code, and finally step (v) is to compare the rfSOL result from step (iv) with the sheath 

post-processing method.  That comparison is shown in Fig. 5. 

 

    

Fig. 5 Comparison of the post-processing result (black) with the rfSOL result 
(red) for test #1: left panel Dn,sh; right panel |Vsh|. Real and imaginary parts of 
Dn,sh are indicated in solid and dashed lines respectively. 

 

From Fig. 5 it can be seen that the agreement is excellent as it should be: this is one of the 

cases for which the post-processing method is exact, in principle. Comparing the 

conducting wall and sheath solutions for Dn in Figs. 3 and 5 it can be seen that the sheath 

BC has changed the structure of Dn and hence Jn significantly. This implies that for the 

parameters of this test, the sheath is far from the conducting limit. 

3.2 Test #2: verification with a shaped wall 

The rfSOL geometry for test #2, illustrated in Fig. 6, is similar to test #1, but with 

a shaped wall. The shape is obtained by deforming the wall with a Gaussian bump  given 

by h(y) = hb  exp[(yy0)2/wb
2]. Because the wall is shaped, it is no longer feasible to 

use the post-processing Fourier method to implement the sheath BC. Instead for this case 

the approximate local method is used. This means that it is necessary to specify a value 

for ky.  The dominant ky launched by the antenna is approximately ky = /Lant where Lant 

= 0.40 m is the length of the antenna in the y direction.  The parameters for this case are: 

ne = 1.01018 m3, Z = 1, A = 2 (deuterium), Te = 15 eV, (Bx, By, Bz) = (4.0, 0.0, 0.0) T, 

ky = 15.7 /m, kz= 160. /m, ω/(2π) = 80 MHz and Kmax = 9 kA/m. The bump shape 

parameters are y0 = Ly/2, hb = 0.4 m and wb = 0.1 m 
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Fig. 6  Geometry for verification test #2. Except for the shaping of the right wall, 
the rfSOL setup is similar to that for test #1 but with different parameters.  The 
antenna is located at x = 2.26 m and the wall is at Lx = 3.0 m. The antenna height 
in y is Lant = 0.4 m.  The domain is periodic in the y direction with box size Ly = 
0.8 m. The bump parameters are hb = 0.4 m and wb = 0.1 m. See Ref. [35] for 
additional information about rfSOL. 

 

Other than the use of the local method, the steps are the same as in test #1.  At 

each point along the sheath surface, the local angle of the magnetic field with respect to 

the surface is employed both for computing kn in the solution of Maxwell’s equations and 

in the argument of the sheath impedance. Results for the RF sheath voltage are shown in 

Fig. 7. It can be seen that in spite of the local approximation, the agreement of the post-

processing method with rfSOL is excellent. The main reason for this is the large value of 

kz = 160/m.  Since the scale length of variation of the bump L is of order wb = 0.1 m, kzL 

= 16  >> 1, so we expect local theory to be a good approximation.  Furthermore because 
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x

y

xL

yL

ant-blD

extJ

0B

Sheath surface

Cold plasma

z

bh

bw





 15 

  

Fig. 7  Comparison of the RF sheath voltage post-processing (black) result with 
the rfSOL (red) result for test #2. 

 

Thus, this case verifies the implementation of the local post-processing method, 

but does not provide much of a guide to its usefulness in more general cases.  That 

question will be addressed in the next sub-section. First we demonstrate another feature 

of the post-processing method. 

Because the inputs to the post-processing method are Jn,cw and kBt,cw from the 

conducting wall solution, and that solution is strictly linear,  Jn,cw and kBt,cw can be 

rescaled to different values of the antenna current Kmax than were originally used.  This 

means that the CW solution can be post-processed for a scan in Kmax from a single CW 

case.  Results for such a scan are shown in Fig. 8. 

  

Fig. 8  Comparison of results for the maximum of |Vsh| over y from rfSOL and the 
post-processing method using the parameters of test #2, except for Kmax which is 
scanned. The base case for test #2, shown in Fig. 7, is for Kmax = 9 kA/m, 
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Fig. 8 shows agreement for small values of Kmax, with growing discrepancies as 

Kmax is increased and |Vsh| becomes large. The reason for this is that as the nonlinearity 

increases at high |Vsh| the solution develops short scale-length structure near the peak 

values of |Vsh| causing the accuracy of the local approximation to deteriorate. However, 

qualitative features present in the more accurate rfSOL result are still quite evident. In 

particular, the three regimes of the RF wave interaction with the sheath are present, For 

Kmax < 6 kA/m the sheath is in a conducting and nearly linear regime. In this regime, as 

discussed above, Vsh is independent of the approximations of the local method, and the 

result comes directly from Jn,cw in analogy to the electrostatic result shown in Eq. (19) 

for || << 1.  For intermediate Kmax in the range 6 kA/m < Kmax < 11 kA/m, the 

interaction crosses a dissipative sheath-plasma wave resonance and |Vsh| rises rapidly 

with Kmax.  In this case the zsh term, i.e.  in the denominator of Eq. (19), is of order 

unity. Finally for Kmax > 11 kA/m the RF wave-sheath interaction enters the quasi-

insulating regime for which the term in the denominator of Eq. (19) begins to exceed 

unity. A more detailed discussion of the sheath regimes and their interaction with RF 

waves is given in Refs. 35 and 38. 

3.3 Test #3: limitations of the local method 

Test #3 was constructed to be more challenging for the post-processing method, 

in order to demonstrate its limitations.  Thus, we continue to use the shaped wall which 

requires the local approximation, but now we choose a smaller value of kz = 40 /m to 

reduce kz L and we choose a value of Kmax = 5.46 kA/m that is just beyond the sheath-

plasma wave resonance. Smaller values of kz tend to reduce  according to Eq. (21), 

causing the sheath to enter the conducting limit. This would be contrary to the desired 

test. Choosing Kmax too near the sheath plasma wave resonance would not provide a 

useful test case as results can be very sensitive in that region. On the other hand, for Kmax 

well below the resonance, it is expected and verified that the post-processing and rfSOL 

results agree very well, since then the simplifications of the conducting sheath regime 

apply.  Except for kz and Kmax, other parameters for test #3 are the same as in test #2. 

Results are shown in Fig. 9. For this case the agreement is only qualitative, 

especially near the peak values of |Vsh| in the range 0.4 m < y < 0.55 m. It is in this range 

that the local sheath parameters depart strongly from the conducting sheath limit.  

Outside of this range, where the sheath voltages are smaller, and the sheath is once again 

in the conducting limit, the local approximation is accurate. Although the post-processing 

method only gives a rough approximation to the rfSOL result, it correctly predicts the 
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location of the peak voltage, and the fact that the peak voltage is extremely large: either 

870 V (post-processing) or 1230 V (rfSOL) would in practice be of significant concern 

for plasma material interactions. 

 

  

Fig. 9  Comparison of the post-processing result (black) with the rfSOL result 
(dashed red) for the RF sheath voltage in test #3. 

4. Summary and conclusions 

In this paper, we have presented a post-processing method for evaluation of RF 

sheath properties and RF sheath-wave interactions. The post-processing method accepts 

as input two scalar quantities from a simulation code that employs conducting wall 

boundary conditions: (i) the RF current normal to the conducting surface and (ii) the 

divergence of the RF magnetic field in the tangential plane of the surface. From these 

inputs the method produces, under some assumptions, results that would have been 

obtained had the original simulation been performed with an RF sheath boundary 

condition. In particular, an output of the method is the RF sheath voltage.  Using methods 

explained in previous published works, [19,33] this enables a calculation of the 

“rectified” DC sheath potential for sputtering as well as a calculation of the RF sheath 

power dissipation which appears as a heat load on the surface. 

The main assumption that makes the post-processing method possible is the 

assumption that the RF wave propagating towards the boundary remains unchanged by 

changing the boundary condition from that of a conducting wall to a sheath boundary 

condition. This condition is expected to hold in many cases, with a notable exception 

being that of a resonant cavity where the outgoing wave (propagating away from the 
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boundary) is reflected elsewhere in the system and mixes with or becomes the incoming 

wave on a later pass. 

Additional assumptions of the method as implemented here are constant or at least 

slowly varying plasma parameters, magnetic field and unit surface normal along the 

sheath surface. 

In this paper we have demonstrated how the post-processing method may be 

iterated to obtain RF field solutions that are self-consistent with the nonlinear sheath 

impedance boundary condition. For all the cases investigated, a simple fixed point 

iteration scheme converged well. Results were compared with solutions obtained from 

the rfSOL code, a full wave code with shaped wall capabilities that employs the self-

consistent sheath BC with nonlinear iteration. 

Two implementations of the post-processing method were demonstrated.  The 

first one is exact and applies to a flat wall.  In this case, the method is applied to each 

Fourier mode on the wall.  Although the sheath nonlinearity induces spatial variation of 

the sheath impedance boundary condition, and this couples the Fourier modes, the 

problem reduces to that of a modestly large matrix equation which may be readily solved 

by standard numerical packages. The second implementation applies to a shaped wall or 

when plasma or magnetic field parameters vary along the surface.  In this case a local 

approximation method is used which requires estimation of the tangential component of 

the wavevector kt of the incoming waves. The local method is theoretically justified 

when ktL > 1 where L is the scale length of variation along the surface. 

We have seen from the examples presented that the post-processing method is  

exact or becomes exact in the limit of a small or large parameter. The situations leading 

to an exact result are as follows: (i) a flat surface with constant plasma and magnetic field 

parameters (for any values of  or kz), (ii) a shaped surface with the sheath in the 

conducting limit, || << 1, or (iii) a gently shaped surface such that local theory is valid, 

kz L  >> 1. In all other cases, the  post-processing method is approximate. An estimate of 

 based on electrostatic theory may be obtained from Eq. (21).

Although it is expected that a sheath boundary condition will eventually be 

implemented in most RF simulation codes intended for boundary plasma analysis, the  

post-processing method may provide a useful means of sheath modeling for some legacy 

RF codes.  Furthermore, for codes which do implement the sheath BC, the method may 

be useful in speeding up nonlinear convergence by supplying an approximate solution as 

an initial guess. In simple geometries the post-processing method may be used as a tool to 
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verify correct implementation of the sheath boundary condition. Finally, the method and 

the examples shown here should help to improve understanding and intuition for the 

behavior of RF wave and sheath interactions. 

Much future work remains to enable quantitative modeling of ICRF boundary 

plasma interactions.  RF sheath potentials should be coupled to kinetic simulation codes 

to calculate ion distribution functions impacting the wall, and the resulting impurity 

sputtering fluxes, [39] and the migration of those fluxes throughout the plasma. The 

micro-scale (Debye-scale) theory of RF sheaths giving rise to the sheath impedance 

employed in the examples of this paper should be verified against experiments and 

generalized as necessary to improve its fidelity.  RF specific sheath power dissipation on 

all surfaces of the device vessel should be calculated in realistic geometry.  Complex 

workflows will be required for this program and are under development in the larger RF 

fusion community. 
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Appendix A: Solution of Maxwell’s equations as a generalized 
eigenvalue problem 

Maxwell’s equations for a homogeneous plasma may be written in the form 

 EBn  c  (A1) 

 cBEn   (A2) 

where n = kc/. The goal of this Appendix is to formulate a generalized matrix 

eigenvalue problem for the component of n normal to a plate in the geometry of Fig. 1.  It 

is assumed that the dielectric tensor   and the tangential components of the wavevector, 

kt, on the surface of the plate are known.  
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We first write out the x, y, and z components of Eqs. (A1) and (A2) in terms of 

nx, ny and nz. We adopt the notation kt = (kt1,kz) where kt1 is the component in the x-y 

plane, Then using the rotational transformations 

  sinkcoskk n1tx  (A3) 

  cosksinkk n1ty  (A4) 

and moving all terms proportional to kn to the right hand side, one arrives at the matrix 

equation 
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(A5) 

 

This is a generalized eigenvalue problem for nn. It is well known that the six scalar 

Maxwell equations contain redundancy: only four are independent. Thus the solution of 

this generalized eigenvalue problem yields two solutions for nn that are formally infinite 

and may be discarded. The remaining four solutions are the desired four modes: incoming 

and outgoing fast and slow waves.  

This generalized eigenvalue approach is an alternative to defining a dispersion 

matrix 



 21 

  In2nn , (A6) 

obtaining from det( ) = 0 a fourth order dispersion relation for nn, finding its roots, and 

then obtaining the null space of   for each root, to give the polarization vectors. 

For reference, the cold fluid dielectric tensor used in this paper is given by 

 Ii)(I ||   bbb , (A7) 

where )/(1 22
i

2
pi  , 22

pe|| /1  and )(/ 2
i

2
i

2
pi  . 

Appendix B: Details of the sheath boundary condition solution 

The first step in the sheath BC solution is to write out the equations with E(1) and 

E(2) as source terms, and E(3), E(4), Jn and kBt as unknowns. This is a straightforward 

rearrangement of Eqs. (5) – (8). The second step in the Fourier method is to express 

(zshJn) in its Fourier representation,  

 k,nkk,sh
k

knsh Jz
N

1
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
  (B1) 

where we work in terms of the finite Fourier transform and its inverse defined by 
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for any function F(y) on an equally spaced grid, yi, where N is the number of grid points 

in the periodic domain.  The resulting equation set for the mode with tangential 

wavevector component (kt1, kz) is 
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We define the abstract vector 

 ),J,E,E(H tn
)4()3(

k Bk   (B8) 

and a source term kS which is the right hand side of Eqs. (B4) – (B7). Then the equation 

set takes the block matrix form 

 kkk,k SHM    (B9) 

with an implicit sum on k where 

 k,kkk,kk,k PQM    (B10) 
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This yields a matrix problem of dimension 4N where N is the number of grid-points on 

which the data for Jn and kBt are given. 
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