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Abstract 

Radio frequency waves used for heating and current drive in magnetic 

confinement experiments must traverse the scrape-off-layer (SOL) and edge plasma 

before reaching the core.  The edge and SOL plasmas are strongly turbulent and 

intermittent in both space and time.  As a first approximation, the SOL can be treated as a 

tenuous background plasma upon which denser filamentary field-aligned blobs of plasma 

are superimposed.  The blobs are approximately stationary on the rf time-scale.  The 

scattering of fast and slow plane-waves in the ion-cyclotron to lower-hybrid frequency 

range from a cylindrical blob is treated here in the cold plasma model.  Scattering widths 

are derived for incident fast and slow waves, and the scattered power fraction is 

estimated.  Processes such as scattering-induced mode conversion, scattering resonances, 

and shadowing are investigated. 

 
PACS: 52.25.Os, 52.35.Ra, 52.50.Qt, 52.55.Fa 
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I. Introduction 

Ion cyclotron range of frequency (ICRF) waves and lower-hybrid (LH) waves 

have been successfully employed for heating and current drive in magnetic confinement 

experiments for many decades.  These radio-frequency waves must traverse the scrape-

off-layer (SOL) and edge plasmas before they can perform their intended functions in the 

core plasma.   

Most present day numerical rf codes treat the propagation of the waves through 

the edge and SOL plasmas in relatively simple linear models in which the background 

plasma is steady state, laminar, and one dimensional (varying only in the flux 

coordinate).  In reality, this tenuous plasma is strongly turbulent and intermittent in both 

space and time.1 A typical auto-correlation time scale for turbulent structures is on the 

order of 10 µs, and the correlation lengths are on the order of 1 cm in the direction 

perpendicular to the background magnetic field B0, and much longer, perhaps 10 m or 

more parallel to B0. Furthermore, fluctuation amplitudes in the far SOL are of order unity 

and are dominated by intermittent convection of blob-filaments and edge-localized 

modes (ELMs).2,3  These filamentary structures, which we will refer to simply as “blobs” 

in the following, consist of flux tubes containing denser plasma than the background.  

The excess density can exceed that of the background by factors much larger than unity.  

Relative to the short rf period for ICRF and LH waves (<< 1 µs), the turbulent structures 

are frozen in time, but present a spatially intermittent SOL to the waves. 

It is to be expected that propagating waves would scatter off of the plasma 

fluctuations. Indeed there is both experimental evidence for such scattering,4,5 and 

previous theoretical treatments of the problem.6-8  The standard theoretical paradigm has 

been to model the fluctuations as a randomized spectrum of plane wave perturbations 

superimposed on a background plasma.  Then the trajectory of the waves in configuration 
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and k-space, upon encountering many scattering events, can be treated in a Fokker-

Planck approximation.  This approach has provided many useful insights.   

In the present paper we take a somewhat different and complementary approach, 

motivated by recent advances in SOL turbulence and blob dynamics.2,3  Specifically we 

consider the interaction of an rf wave with a single blob-filament.  This limit is 

particularly interesting for the far SOL, where the blob events are large but rare and 

therefore relatively isolated from each other. 

To model this situations, in this paper, we compute the scattering of a plane wave 

from a cylinder of higher (or perhaps lower) constant density plasma, i.e. a blob (or 

“hole”).  The geometry is shown in Fig. 1.  The primary quantity of interest is the 

scattered power and its spatial distribution, i.e. the total and differential scattering cross-

section or width.  (Because of assumed symmetry along the axis of the cylinder, the 

scattering width is just the scattering cross-section per unit length). The calculation is a 

generalization of the classical problem of scalar wave scattering from a metal cylinder 

that is treated in standard textbooks.9  Here, however, we must address the complications 

introduced by vector wave-fields, the anisotropic magnetized plasma dielectric tensor, 

and electromagnetic matching conditions across the interface between the blob and 

background plasma.  Nevertheless, as we shall see, the problem is still amenable to a 

treatment in terms of Bessel and Hankel functions. 

Two cases are considered: (i) an incident fast wave (FW) (motivated by ICRF 

applications), and (ii) an incident slow wave (SW) (motivated by LH applications). The 

formalism is discussed in Sec. II and in the Appendices, while the applications to the FW 

and SW are discussed in Secs. III and IV respectively.  Conclusions are given in Sec. V. 
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Fig. 1 (color online) Geometry for rf blob scattering.  The plasma 
parameters are taken as constants in the background and in the 
blob. 

II. Scattering formalism 

In order to calculate rf scattering from blobs in our model, it is necessary to solve 

the FW and SW equations in cylindrical geometry, (r, θ, z) with the background magnetic 

field B0 = B0ez along the axis of the cylinder.  For a homogeneous plasma, the FW and 

SW are normally decoupled when ε|| >> ε⊥ where the cold-fluid dielectric tensor is 

represented as 

 Ii)(I || ×ε+ε−ε+ε=ε ×⊥⊥ bbb  (1) 

where b = B0/B0 = ez.  For the present range of applications to ICRF and LH waves in 

the low density SOL plasma, the following approximations are adequate: 

)/(1 22
i

2
pi ω−Ωω+=ε⊥ , 22

pe|| /1 ωω−=ε , )(/ 2
i

2
i

2
pi Ω−ωΩωω=ε×  where ωpi, ωpe 

and Ωi are the ion plasma, electron plasma and ion cyclotron frequencies respectively.  

The reduced wave equations for the FW and SW in cylindrical geometry are derived in 

Appendix A.   

For the FW, which obeys the ordering ε|| >> ε⊥~ 2n ⊥ ~ 2
||n , the decoupling of FW 

and SW amounts to neglecting Ez to obtain 
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where n|| = k||c/ω, λ0 = c/ω, and all wave fields are proportional to exp(imθ + ik||z − iωt). 

For the SW, which obeys the ordering ε|| ∼
2n ⊥ >> ε⊥~ 2

||n , the calculation in 

Appendix A shows that Φ−∇= ⊥⊥E where Φ and Ez obey 

 0Eik)n( z
22

0||
22

|| =∇λ+Φ∇−ε ⊥⊥⊥  (4) 

 0EEik z||z
22

0
22

0|| =ε+∇λ+Φ∇λ ⊥⊥  (5) 

The next step is to find general solutions to these FW and SW equations in 

cylindrical geometry for a given m and k||, i.e. we seek the radial structure of the modes.  

A solution of Eqs. (2) and (3) or (4) and (5) is deferred to Appendix B where it is shown 

that the general solution of these equations takes the form 

 )r(Ee )j(
m

)j(
m

j,m

im WE ∑ θ=  (6) 

Here, the index j denotes the wave type (incident field, scattered field, or field internal to 

the blob) as well as the branch of wave (FW or SW), the )j(
mE are constant amplitudes to 

be determined, and the )r()j(
mW are combinations of Bessel functions.  For example, for 

an incoming fast plane wave normalized so that Ey has unit amplitude as x → ∞  it is 

shown that 

 θ
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+′= ∑ imm
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1m e
rk
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where Q = )n/(i 2
||−εε ⊥× , all Bessel functions have argument rk⊥=ξ , where  r = x 

cos θ, and for the incoming wave ky = 0 so that xkk =⊥ . 

Having obtained Eq. (6) as the general solution to the wave equation, it remains to 

satisfy boundary conditions.  We choose Jm Bessel functions for the internal blob 

solution to give regularity at r = 0, outgoing Hankel functions for the scattered wave, and 

Jm Bessel functions for the plane wave expansion of the incident wave.  These choices 

satisfy appropriate boundary conditions at zero and infinity.  Finally, we apply the 
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electromagnetic matching conditions across the blob interface at r = ab, assuming no 

surface currents, viz. the continuity of Eθ, Bz, Dr and Ez where D = ε⋅E¸ and Eθ, Bz, Dr 

and Ez are all rf oscillating quantities. (When these 4 quantities match, it can be shown 

that Br and Bθ also match.) This matching determines the unknown coefficients )j(
mE in 

terms of the amplitude of the incident wave. 

In general, the interface matching results in a 4 × 4 system of equations for the 

internal blob and scattered amplitudes of both FW and SW polarizations.  That is, the 

scattering process in general mixes the FW and SW polarizations.  When the mixing of 

polarizations can be neglected, the 4 × 4 system  reduces to 2 × 2 blocks for the FW and 

SW respectively. 

To be more explicit let  

 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

′

′=

ptypewaveblob4
ptypewaveblob3

ptypewavescattered2
ptypewavescattered1

ptypewaveincident0

j  (8) 

where the fields j = 0, 1, 2 apply for r > ab while j = 3, 4 apply for r < ab.  If p is the FW 

then the notation p′ implies the SW, and vice versa.  The scattering of each m component 

can be treated separately because there is no explicit θ dependence in )j(
mW .  This allows 

a simplification of notation:  dropping the m index and moving the (j) from a superscript 

down to a subscript.  With the incident wave E0 regarded as known, one can solve for the 

scattered wave and the solution inside the blob.  Then the 4 matching conditions at r = ab 

take the form  

 θθθθθ −=−−+ 0044332211 WEWEWEWEWE  (9) 

 0044332211 MEMEMEMEME −=−−+  (10) 

 0044332211 DEDEDEDEDE −=−−+  (11) 

 z00z44z33z22z11 WEWEWEWEWE −=−−+  (12) 
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where 

 jrjj W
r

imrW
dr
d

r
1M −= θ  (13) 

 θ×⊥ ε−ε= jjrj WiWD  (14) 

and all quantities are evaluated at r = ab. Here EjMj is proportional to Bz while EjDj is 

proportional to Dr.  The FW and SW limits of this system are considered in the following 

sections. 

The scattered power is obtained from the asymptotic forms of the outgoing 

Hankel functions (j = 1, 2) and the Poynting flux these waves carry (see Appendix C).  

The solution to Eqs. (9) – (12) gives the amplitudes of the various waves at the blob 

interface. These are related to the asymptotic forms as r → ∞ by using the particular 

combination of Bessel and Hankel functions appropriate to the given FW or SW (see 

Appendix D).  Then, the ratio of total scattered wave Esca to incident wave Einc can be 

expressed as  

 ∑ θ

∞→
=

m

im
m

rinc

sca eA
E
E

 (15) 

and from Appendix C the scattered power is 

 ∑π
=

m

2
m

yinc

sca A
L

r2
P
P

 (16) 

It is then natural to define the scattered power per scattering center (i.e. blob) per incident 

power / Ly as the effective scattering width 

 ∑π=σ
m

2
mAr2  (17) 

Finally, a heuristic estimate of the total scattered power is obtained by summing 

over all blobs in the path of the incident wave (neglecting multiple scattering events, and 

correlations, i.e. strictly valid for a sparse blob population).  Let 

 
y

b
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where Nb is the number of blobs in a cross-sectional area of SOL equal to LxLy and Lx is 

the length of the blob-populated SOL path of the incident rf wave.  Define the packing 

fraction of blobs in the SOL as 

 
yx

b
2

p LL
Na

f
π

=  (19) 

Then the fraction of incident power scattered by all blobs in the path of length Lx is 

 2
xp

inc

stot
P

a

Lf
P
P

F
π

σ
=≡  (20) 

III. Scattering of an incident fast wave 

FW limit of the formalism 

Although the possibility of coupling of an incident FW to a SW by blob scattering 

is of interest, we begin by ignoring the SW.  Later we calculate the SW fields 

perturbatively, noting the conditions where the perturbation theory breaks down.  

Neglecting the SW results in the reduced  FW matching problem at r = ab 

 θθθ −=− 003311 WEWEWE  (21) 

 003311 MEMEME −=−  (22) 

and the solution 

 
1331

3003

0

1
MWMW
MWMW

E
E

θθ

θθ
−
−

=  (23) 

 
1331

1001

0

3
MWMW
MWMW

E
E

θθ

θθ
−
−

=  (24) 

Here the Bessel-function combinations Wj and Mj have the arguments ξ = k⊥ab  for the 

external functions (j = 0, 1) and ξb = k⊥bab for the internal functions (j = 3) where k⊥ and 

k⊥b are evaluated from the dispersion relation using external and internal-blob 

parameters respectively.  Explicit forms for Wj and Mj are given in Appendix D.  A few 

limiting cases follow. 
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 Metallic blob limit 

A simple illustrative example is obtained by considering the somewhat extreme 

case of a high-density “metallic” blob which satisfies ξb >> 1, while retaining the 

realistic ordering in the background plasma that the FW wavelength is much longer than 

the blob radius ξ << 1.   As the blob density is raised relative to the background, k⊥b/ k⊥ 

becomes a large parameter.  Taking this parameter asymptotically large results in M3 

becoming large relative to the other terms.  As a result E3/E0 → 0 (i.e. the fields vanish 

within a good conductor) and E1 is approximated by 

 
θ

θ−=
1

0

0

1
W
W

E
E

 (25) 

Then taking the subsidiary limit ξ << 1, after some algebra employing the small argument 

expansions of Wjθ, we obtain leading order contributions from m = 0, ±1 with the result 

 ⎥
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δ⎟⎟
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i
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1
1Q
1Q

1Q
1Q

4
i

E
E

 (26) 

where the purely real quantity Qi ≡ −iQ and Q was defined after Eq. (7). Larger |m| gives 

higher order terms in ξ (e.g. m = 2 yields E1 ~ ξ4) which may therefore be dropped. 

For the scattered power, we need the asymptotic form of Eθ for the scattered wave 

(j = 1) which is 

 1
m

2/imim)4/rk(i Eee
rk

2i~E ∑ π−θπ−

⊥
θ ⊥

π
 (27) 

From the expansion of the incident plane wave given in Appendix B, 1m
0 iE −=  where 

the incident wave |Ey|2 is normalized to unity.  Thus 
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Using Eqs. (15) – (17), the effective scattering width is then obtained as 

 
⎥
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The scattered power fraction is 

 x
23

p2
xp

P Lakf~
a

Lf
F π

π

σ
=  (30) 

so even in the extreme case fp ~ 1 and kLx ~ 1, the scattered power is small in the 

parameter ξ2 = k2 2
ba .  We conclude that the metallic blob does not scatter the FW 

significantly. 

Normal blob limit 

Next, we consider the more realistic ordering ξ ~ ξb << 1.  Expanding in both ξ 

and ξb results in the leading order terms 

 

1,m2
bi

2
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2
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bi2
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2
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4
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ξ+−ξ+πξ
−δ
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−=  (31) 
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2

E
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ξ
+δ

ξ−−ξ+

ξ
+δ

ξ
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=  (32) 

As a check, we see that E1 = 0 and E3 = 1 for ξ = ξb and Q = Qb (i.e. “blob” 

indistinguishable from background).  In order of magnitude, we have 

 1,m
2

1,m
2

0

1 )(O)(O~
E
E

−δξ+δξ  (33) 

 1,m1,m0,m
0

3 )1(O)1(O)1(O
E
E

−δ+δ+δ=  (34) 

so that E1/E0 ~ O(ξ2) still holds, just as in the metallic blob limit.  As a result the 

scattering width is also small in the present case. 

Scattering-induced mode conversion 

When ks >> kf, where subscripts s and f refer to the SW and FW respectively, the 

SW amplitudes may be determined perturbatively from 

 3311004422 DEDEDEDEDE +−−=−  (35) 

 0WEWE z44z22 =−  (36) 
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where use has been made of the fact that Ez for the FW is negligible.  Solving these 

equations yields 

 
z242z4

z4f
2 WDDW

WSE
−

=  (37) 

 
z242z4

z2f
4 WDDW

WSE
−

=  (38) 

where the FW driving source term is 

 331100f DEDEDES +−−=  (39) 

When the denominator vanishes, i.e. when 

 z242z4 WDDW =  (40) 

we have a slow wave scattering resonance (SWSR).  The perturbation theory clearly 

breaks down at such points, but they are nonetheless expected to define points of 

enhanced scattering and FW → SW conversion.  Using the result in Appendix D, the 

SWSR occurs when 

 
mbs

mbsb
b

bmbsbbsb

ms

ms
b

mss

J

JL
a
mJLk

H

LH
a
mHLk ×⊥⊥×⊥⊥ ε+′ε

=
ε+′ε

 (41) 

Here Hms = (Hm)s ≡ Hm(k⊥sab) indicates that the Bessel function is evaluated at the slow 

wave root of the dispersion relation.  L is defined in Eq. (B13). 

To gain some insight into the possibility of SWSR, consider the case m = 0: 

 
bs0

bs0bs
2
||b

b

s0

s0s
2
||

J
J

nH
H

n

′ξ

−ε

ε
=

′ξ

−ε

ε

⊥

⊥

⊥

⊥  (42) 

For real arguments of all the Bessel functions (i.e. a propagating SW both in the blob and 

background) the LHS is complex while the RHS is pure real, thus no resonance is 

possible.  However, if we consider the case of an evanescent SW in the background 

plasma (ξs pure imaginary and positive) then s0s0s H/H′ξ is real while for ξbs either real 

and positive or pure imaginary and positive bs0bs0bs J/J′ξ is real.  In these cases, a 

solution is possible.  In particular for the case of ξbs real, the RHS is qualitatively tan-like 
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covering the range (−∞, ∞) and will admit solutions when the argument ξbs is of order 

unity or larger.  Such a solution corresponds to a SW-blob “bound state”.  Normally, SW 

propagation in the blob, but evanescence in the background will require that the “blob” 

have lower density than the background, and is thus not a blob but a “hole”. Thus we 

conclude that SWSR can occur when a hole is large enough to admit one or more SW 

wavelengths.  In practice isolated holes are not likely to occur in the SOL, but the 

implication is that there could be FW → SW conversion at the turbulent edge of the 

plasma when the turbulence scale size is comparable to the SW wavelength. 

In the absence of a SWSR, the validity condition for the perturbation expansion 

can be determined by demanding a typical SW term in the Eθ equation be small 

compared with a typical FW term, e.g. θθ << 3322 WEWE .  This estimate can be shown 

to require |ξs| >>1.  Intuitively we expect the SW coupling to be negligible in the FW 

equations when sf kk <<  which is usually satisfied when ε|| >> ε⊥.  However, here the 

FW wavelength is forced to be kf  ~ m/ab near the blob, so for m ~ 1 the decoupling 

condition sf kk << reduces to |ξs| >>1. 

IV. Scattering of an incident slow wave 

SW limit of the formalism 

For this application, the index p in Eq. (8) corresponds to the SW.  In the interest 

of simplicity, the calculation will be restricted to the electrostatic limit.  In this case L in 

Eq. (B13) reduces to L = i/kz and since zLE=Φ , matching of Φ on the surface of the 

blob matches both Eθ and Ez.  Consequently, the two relevant matching conditions from 

the set Eqs. (9) – (12) are for D and Wz (i.e. Wθ is redundant).  Neglecting the coupling 

to the FW, we obtain the 2 × 2 system of equations 

 003311 DEDEDE −=−  (43) 

 z00z33z11 WEWEWE −=−  (44) 

with coefficients given in Appendix D.  The solution is 
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1z33z1

3z00z3

0

1
DWDW
DWDW

E
E

−
−

=  (45) 

 
1z33z1

1z00z1

0

3
DWDW
DWDW

E
E

−
−

=  (46) 

Typical parameters for LH waves in the SOL suggest that plasma effects enter 

mainly through ε||, i.e. ε⊥ ≈ 1 and ε× << 1 which is the limit considered in the following.  

In this case, the scattered slow wave is given by 

 ),(S
HJJH

JJJJ
E
E

bm
mmbmbbm

mbbmmmb

0

1 ξξ≡
′ξ−′ξ

′ξ−′ξ
=  (47) 

Note that For ξ = ξ b, E1 vanishes as it should.  For clarity in the next steps, we revert to a 

more explicit notation 

 ),(Si),(SEE bm
m

bm0
)1(

m ξξ=ξξ=  (48) 

and here the incident wave is normalized with Ez = 1. 

The Sm, which gives the waves at the blob interface, are related to the scattering 

coefficients Am using the Bessel coefficients for the SW, and their asymptotic forms, as 

given in Appendix D. The asymptotic form of Ez for the scattered wave is 

 )4/rk(i
m

m

im
mbm

m

m

im)1(
z e

rk
2Se)rk(H),(SieE π−

⊥

θ
⊥

θ ⊥

π
→ξξ= ∑∑  (49) 

The effective scattering width is then obtained as 

 ∑∑ ξξ
ξ

=
π

π
=

σ

⊥ m

2
bm

m

2
m

bb
),(S4S

rk
2

a
r2

a
 (50) 

It is also useful to define the differential scattering width 

 
2

m

im
bm

b
e),(S2

a
)( ∑ θξξ

πξ
=

θσ  (51) 

with σ=θσθ∫ )(d .  A good diagnostic of the angular distribution of the scattered power 

(as r → ∞) is therefore the normalized differential scattering width 
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∑

ξξπ

ξξ

=
σ
θσ

=θσ

θ

m

2
bm

2

m

im
bm

),(S2

e),(S
)()(ˆ  (52) 

which on average is 1/2π. 

From the general result of Eq. (47), together with Eq. (50), it is seen that that σ ~ 

ab for ξ ~ ξb ~ 1.  The ratio of scattered to incident power FP in Eq. (18) or (20) will be of 

order unity when one or more blobs (Nb ≥ 1) is encountered is a poloidal swath of plasma 

of width Ly ~ σ ~ ab as the rf traverses the SOL. 

In the next sub-sections various regimes of Eq. (47) (ξb → ∞, ξ << 1, ξ ~ 1 and, ξ 

>> 1) are considered by analytical expansion and by direct numerical evaluation of the 

general result. For completeness it should be noted here that in the tenuous plasma 

regime the SW is a backward propagating mode.  However, as discussed in Appendix E, 

this fact is inconsequential for the scattering solutions. 

Metallic blob limit 

As in the FW case, some useful insights are gained by first considering the 

metallic blob (i.e. metal cylinder) limit in which ξb → ∞.  From Eq. (46) using the results 

of Appendix D it follows that E3 = 0 in this limit, as expected.  Then from Eq. (47)  

 
m

m
m

0

1
H
JS

E
E

−==  (53) 

In the ξ << 1 sublimit the dominant contribution comes from m = 0 

 
)2/ln(2i2

iS0 ξ+π−γ
π

=
Ε

 (54) 

where γE  =  0.577… is Euler’s constant.  The scattering width follows as 

 
1)]2/ln()/2(/2[

1
k
4S

k
4

2
m

2
0

+ξπ+πγ
==σ

Ε⊥⊥
∑  (55) 
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It is also straightforward to treat the insulating blob limit (ξb = 0) analytically.  

Note the scaling σ ~ 1/k⊥in this long-wavelength metallic blob limit, independent of the 

blob size. 

LH scattering: long wavelength limit 

In general, the (far-field) long-wavelength regime is obtained when ξ << 1 

without demanding large ξb.  As an example, the scattering width for ξ = 0.1 and varying 

values of ξb is shown in Fig. 2.  Note that a typical value of σ is of order 1/k⊥ not ab (i.e. 

σ/ab ~ 1/ξ ~ 10 here). This means that the blob causes long range perturbations, on the 

order of the wavelength which is much greater than the blob size, when ξ << 1.  Even 

larger values of σ occur near scattering resonances, where the denominator of Sm is 

small.  The broad feature near ξb = 1 is related to a weak m = 0 resonance, and the sharp 

spike near ξb = 2.4 is a strong m = 1 resonance.  Scattering resonances are studied further 

in the next sub-section. Except near the scattering resonances, the results for ξb > 1 are of 

the order-of-magnitude predicted by the metallic blob limit with ξ << 1. 

The field pattern for ξb = 0.9 is shown in Fig. 3.  The differential scattering width 

(not shown) is essentially independent of θ, but interference of the scattered and incident 

waves occurs, giving rise to the observed pattern. 
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s
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= k⊥abξb  

Fig. 2 (color online) Scattering width normalized to the blob size 
ab for the case ξ = 0.1.  Asymptotic results for ξ, ξb << 1 and for 
the metallic blob limit with ξ << 1 are shown in dashed red.  Note 
the strong scattering resonance at ξb = 2.4. 
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x
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x

y

 

Fig. 3 (color online) Field pattern Re(Ez) for the same case as 
Fig 2 at ξb = 0.9.  The incident wave is coming from the left.  The 
blob is the tiny (almost invisible) dot at the center of the figure, x 
= y = 0. 

LH-blob scattering resonance 

Blob scattering resonances can occur for special values of the parameters. The m 

= 1 resonance in Fig. 2 is very sharp for two reasons.  First, parameters in the blob 

interior (i.e. ξb of order unity) permit a SW wavelength to fit inside the blob. Second, ξ 

<< 1 implies that the radiation damping of the scattered wave (~ k⊥) is small, and 

therefore an approximate “bound state” exists.   This particular resonance is an m = 1 

resonance, and is shown in more detail in Figs. 4 and 5. 

Figure 4 shows the field pattern.  The incident wave energy is coming in from the 

left in all field pattern figures in this paper. The m = 1 character is clearly evident from 

the inset figure, which shows an enlarged view of the blob itself.  The angular 

distribution of scattered power, i.e. the normalized differential cross-section )(ˆ θσ is 
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shown in Fig. 5. Both forward and backward scattering are enhanced relative to the non-

resonant case of Fig. 3. 
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y
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Fig. 4 (color online) Field pattern Re(Ez) for the m = 1 scattering 
resonance at ξb = 2.4, ξ = 0.1 (also see Fig 2).  The inset figure 
shows an enlarged view of the blob region.   

 

 

Fig. 5 (color online) Normalized differential scattering cross-
section for the same case as Fig. 4.  Forward scattering 
corresponds to θ = 0. 
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LH scattering: short wavelength limit 

Finally, we consider a moderately short wavelength by taking ξ = 3 and examine 

the scattering for disparate ξb.  First, the case ξb = 0.1 is shown in Fig. 6.   In this case, 

since ξb < ξ the SW dispersion relation typically requires lower density inside the 

cylinder, i.e. the blob is actually a hole. For comparison, the case ξb = 10 is shown in Fig. 

7.  Both cases illustrate the phenomenon of shadowing, which is expected when waves 

encounter an object much larger than its wavelength.  Both back-scattering and small-

angle forward scattering are possible in this regime. 

 

 

 

x

y

x

y

 

Fig. 6 (color online) Field pattern Re(Ez) for the case ξb = 0.1, ξ 
= 3.  The blob (here actually a hole) is shown by the black circle.  
Note the shadowed wedge for x > 0. 
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Fig. 7 (color online) Field pattern Re(Ez) for the case ξb = 10, ξ 
= 3.  The blob is shown by the black circle.   
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Fig. 8 (color online) Normalized differential scattering width for 
the same case as Fig. 7.  Small-angle forward scattering “ears” 
are prominent. 

V. Conclusions 

In this paper we have investigated rf scattering from isolated field-aligned 

cylindrical blob-filaments.  While the formalism presented in Sec. II is for the most part 



 20 

general, applications have focused on two cases: incident ICRF fast waves and incident 

LH slow waves. 

Fast wave scattering is typically, and not surprisingly, found to be small in the 

ratio of the wavelength 2π/k⊥ to the blob radius ab  in the plane perpendicular to B.  The 

scattering width is given by Eq. (29) and scales as 4
b

3 ak ⊥∝σ  while the fraction of 

incident power that is scattered is given by Eq. (30).  The scattered power is small 

enough that it is unlikely to be of direct concern as a power loss channel.   

However, the FW scattering analysis also showed that scattering-induced mode 

conversion of FWs to SWs is possible.  This process is expected to be strong when the 

scale length of blobs (or holes) is comparable to the slow-wave wavelength.  The present 

calculation must be regarded as suggestive and qualitative because only the breakdown of 

the perturbation expansion in the size of the SW relative to the FW was demonstrated in 

Eqs. (37) and (38).  It is important to note that the conversion of even a small fraction of 

FW power into the SW branch could be significant for edge interactions involving rf-

sheaths at the plasma-facing surfaces. 

Scattering of an incident slow wave is found to be significant, as expected from 

previous work that employed a density fluctuation formalism.6-8 Since the SW 

wavelength for LH waves can be order-of-magnitude comparable to the size of turbulent 

blob structures, various regimes of the critical parameter  ξ = k⊥ab  are of interest.  A 

typical value of the scattering width σ is the larger of 1/k⊥ and ab.  In particular, for small 

ξ << 1 the blob perturbs the rf fields on a space scale of the order of a wavelength, even 

though the blob radius is much smaller (Fig. 3).  The ξ << 1 regime is very different for 

SWs than for FWs (where scattering is negligible) because of the wave polarization.  

Other scattering phenomena were also demonstrated, including the existence of slow-

wave scattering resonances (Figs. 2 and 4), and for ξ >> 1, rf-wave shadowing (Fig. 5) 

and small-angle forward scattering. 
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The present calculations only treat the single-blob limit.  If the packing fraction of 

the blobs is sufficiently dense relative to the wavelength, then scattering from several 

near-by blobs can be correlated and the approach taken here breaks down.  While the 

single blob limit is of interest in the far SOL, the many-blob-hole limit would be 

expected to apply closer in towards the separatrix.  Results here suggest that a numerical 

investigation of LH blob scattering, and of ICRF blob scattering retaining induced mode 

conversion, would be interesting.  Finally, in addition to rf physics applications such as 

power loss and edge interaction, rf blob scattering may be of interest as a tool for 

diagnosing turbulent structures in the edge and SOL plasmas. 
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Appendix A: Fast and slow wave equations in a cylinder 

In this appendix, we obtain reduced wave equations for the FW and SW in 

cylindrical geometry.  The starting point is the wave equation 

 02
0 =⋅ε+×∇×∇λ− EE  (A1) 

where ω=λ /c0  and modes vary like exp(imθ + ik||z − iωt).   For the cold-fluid plasma 

model given by Eq. (1) and taking B0 along z 

 [ ] [ ] [ ]z||zrrr EEiEEiE ε+ε+ε+ε−ε=⋅ε ×θ⊥θθ×⊥ eeeE  (A2) 

The complete wave equation in cylindrical coordinates therefore has the components 
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FW equations 

The FW ordering ε|| >> ε⊥~ 2n ⊥ ~ 2
||n implies that ε|| is the largest parameter in the 

problem, therefore Eq. (A5) renders Ez negligible in lowest order.  The remaining 

equations can be manipulated to obtain 
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SW equations 

The SW ordering is 2
||

2
|| n~n~ ⊥⊥ ε>>ε . Since we anticipate cancellations, 

small terms are retained on the right-hand-side (RHS) of the equations to yield the (still 

exact) forms 

 θ×⊥θ ε+−ε−λ=λ−λ− EiE)n(
dr

dE
ik)rE(

dr
d

r
imE

r
m

r
2
||

z
z

2
02

2
0r2

2
2
0  (A8) 

r
2
||z

z2
0

2
0

r2
0 EiE)n(E

r
mk)rE(

dr
d

r
1

dr
d

r
E

dr
dim ×θ⊥θ ε−−ε−λ−=⎟

⎠
⎞

⎜
⎝
⎛λ+⎟

⎠
⎞

⎜
⎝
⎛λ−  (A9) 

 θλ−λ=ε+λ−⎟
⎠
⎞

⎜
⎝
⎛λ E

r
mk

)rE(
dr
d

r
ik

EE
r
m

dr
dE

r
dr
d

r
1 z2

0r
z2

0z||z2

2
2
0

z2
0  (A10) 

Next, assuming that ε⊥ and ε|| are constants, Eqs. (A8) and (A9) may be manipulated to 

get equations for E⋅∇−ε ⊥⊥ )n( 2
|| and  Ee ×∇⋅−ε⊥ z

2
|| )n( . 



 23 
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2
||z

22
0  (A12) 

Note that in Eq. (A11) the LHS has cancelled out, while in Eq. (A12) it remains.  Thus in 

the SW ordering EEe ⋅∇×∇⋅ /z is small in ⊥⊥ ε/n 2  << 1.  This justifies the quasi-

electrostatic approximation for the perpendicular electric fields, viz. 

 Φ−∇= ⊥⊥E  (A13) 

Then the two coupled equations describing the SW come from Eqs. (A10) and (A11) and 

are 

 0Eik)n( z
22

0z
22

|| =∇λ+Φ∇−ε ⊥⊥⊥  (A14) 

 0EEik z||z
22

0
22

0z =ε+∇λ+Φ∇λ ⊥⊥  (A15) 

Appendix B: Solution of the wave equations 

The expansion of the incoming plane wave in cylindrical coordinates is central to 

the scattering problem.  For a scalar field, the required identity is just 

 ∑
∞

−∞=

θθξ ξ=
m

im
m

mcosi e)(Jie  (B1) 

where for the plane wave ξ = k⊥r.  Here, we need to perform the plane wave expansion in 

cylindrical coordinates for the vector electric fields with polarizations corresponding to 

the fast and slow waves. From this, a general solution of the wave equations will become 

apparent. 

FW equations 

Consider an incoming plane FW with ky = 0.  In Cartesian coordinates, the FW 

electric field vector has the polarization 
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 xik
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where 
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and k⊥ satisfies the FW dispersion relation 
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From this solution, we transform from Cartesian to cylindrical coordinates directly, using 

θ= cosrx , θ= sinry , θ−θ= θ sincosrx eee , θ+θ= θ cossinry eee .  The result is 
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which is converted by Bessel identities to 
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where Jm = Jm(k⊥r).  

In Appendix A the FW equation in cylindrical coordinates was derived.  The 

coupled equations for Eθ and Er are separable in r and θ.  It follows that each individual 

term in the above plane wave expansion must be a solution of the wave equations.  It can 

be shown that this is the case when k⊥ satisfies the FW dispersion relation.  Thus the 

general solution of the wave equation can be constructed as  

 θ
θθ ∑= im

m
mm e)r(WEE  (B8) 
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 θ∑= im

m
rmmr e)r(WEE  (B9) 

where the Em are arbitrary constants,  and for regular BCs at r = 0 
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In general, a linear combination of Jm and Ym are permitted; e.g. for outgoing wave 

boundary conditions Jm → )1(
mH  where )1(

mH  is the outgoing Hankel function. 

SW equations 

Next, consider an incoming plane SW with ky = 0.  In Cartesian coordinates, the 

field components of the SW are related by [see Eq. (A14)] 

 zLE=Φ  (B12) 
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The electric field polarization for the SW is of the form 

 xik
z e)Li( ⊥⊥−= keE  (B14) 

where k⊥ satisfies the SW dispersion relation 

 ||||
2
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Following the same logic as for the FW, the general SW solution takes the form 
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 ∑ θ=
m

im
mmz eJEE  (B18) 

where again, depending on BCs, a linear combination of Jm and Ym are permitted 

wherever Jm appears.  It may be verified directly that Eqs. (B16) – (B18) indeed satisfy 

the SW wave equation for constant ε⊥ and ε||. 

Appendix C: Poynting flux and scattered power 

The Poynting flux is 

 cc
16

c
+×

π
= ∗BES  (C1) 

Given the wave polarization of the scattered waves, one can calculate the asymptotic 

power in each m component and ratio of scattered power per blob to the total incident 

power. 

Fast waves 

Neglecting Ez and taking x as a radial variable (in a local coordinate system 

asymptotically far from the source) ccBE)16/c(S zyx +π= ∗ , therefore using 

yxz EnB =  

 2
2

r
r E

8
ckS θπω

=  (C2) 

which applies to both incoming (kx, Ey) and scattered (kr, Eθ) waves.  Since the plasma 

dispersion is the same, incoming and scattered waves also have the same k⊥= kx = kr.  

The incoming incident power is 
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where Ly and Lz are the dimension of the incoming rf beam.  The scattered power is 
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and the ratio of scattered (subscript 1) to incident  (subscript 0) power is 
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For the FW it is convenient to express the scattering amplitudes in the form 
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Slow waves 

For the slow wave polarization, neglecting Bz, the Poynting flux is given by 

ccBE)16/c(S yzx +π−= ∗ and using z||xy E)Lik1(nB +−=  where L is defined in Eq. 

(B13) we find the Poynting flux for the incident wave is 
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and for the scattered wave, it is 
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In the quasi-electrostatic limit employed in the main text, one can further invoke 

⊥ε>>2
||n  to simplify these expressions.   

Analogous to the FW case, the ratio of scattered (subscript 1) to incident  

(subscript 0) power is 
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For the SW it is convenient to express the scattering amplitudes in the form 
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im
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Then, Eq. (C7) gives the ratio of scattered to incident SW power. 

Note that the SW can be a backward propagating mode, i.e. for positive (right-

going) Poynting flux and group velocity ∂ω/∂kx, the phase velocity ω/kx is negative.  

Appendix D: Bessel scattering coefficients 

In this appendix, we give the vector components of the FW and SW solutions to 

the respective wave equations in cylindrical geometry, Eqs. (2) − (5), adopting the 

notation of Eq. (6).  These coefficients are obtained from Eqs. (B10), (B11), (B16), (B17) 

and (B18).  

In the following ξ = k⊥r and for the matching conditions ξ = k⊥ab.  All Bessel 

functions are evaluated at ξ (or ξb = k⊥br where k⊥b is from the dispersion relation using 

blob plasma parameters).  Hm is the outgoing Hankel function. 

Incident fast waves 

Considering an incident FW, but allowing for both types of scattered wave, the 

subscript s denotes the SW root, unadorned k denotes the FW root for k⊥ and the index j 

= (0, 4) is as described in Eq. (8) with p = f and p′ = s. 

 
rk

imQJJW m
m0
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θ +′=  (D1) 

 ms2 LH
r

imW −=θ  (D2) 

W1θ is obtained from W0θ by the replacement Jm → Hm. W3θ is obtained from W0θ by 

evaluation inside the blob (i.e. k⊥→ k⊥b, Jm → Jmb, Q → Qb etc.). W4θ is obtained from 

W2θ by first replacing Hm → Jm and then by invoking evaluation inside the blob. 
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 (D3) 

 mssr2 HLkW ′−= ⊥  (D4) 

The rules for obtaining W1r, W3r and W4r are as stated after Eq. (D2).  For the z-

components, neglecting Ez of the FW 

 msz2 HW =  (D5) 

 mbsz4 JW =  (D6) 

and all other Wjz are zero.  Here subscript “s” denotes that the Bessel function is to be 

evaluated at the SW root for k⊥, i.e. Hms = Hm(k⊥sr). 

From these elementary quantities we can work out Mj and Dj.  For M0, M1 and 

M3 which are FW quantities, we use Eq. (13) and the Bessel relation 

 m
2

m
2 JkJ ⊥⊥ −=∇  (D7) 

and similarly for Hm. 

 m0 JkM ⊥−=  (D8) 

 0M2 =  (D9) 

M1, M3 and M4 are obtained by the rules stated after Eq. (D2). M2 = M4 = 0 (∝ Bz) has 

the interpretation that the SW is electrostatic in the x-y plane, having an electromagnetic 

component only in E|| (from A|| which does not generate a Bz).  Finally 

 θ×⊥ ε−ε= 0r00 WiWD  (D10) 

 msmss2 LH
r
mHLkD ×⊥⊥ ε−′ε−=  (D11) 

with D1,D3 and D4 obtained by the substitution rules. 
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Incident slow waves 

Bessel coefficients are given here for the case of incident and scattered SWs.  SW 

to FW conversion coefficients are not given here, so an unadorned k denotes the SW root 

for k⊥ and the index j = 0, 1, 3 is as described in Eq. (8) with p = s.  

 mr0 JLkW ′−= ⊥  (D12) 

 m0 LJ
r

imW −=θ  (D13) 

 mz0 JW =  (D14) 

For α =  r, θ, z: W1α is obtained from W0α by the replacement Jm → Hm; W3α is 

obtained from W0α by evaluation inside the blob. 

The SW scattering problem also requires the Djα coefficients.  In general these 

have a complicated form, as in Eq. (D10) and (D11). In the tenuous plasma limit, invoked 

in the main text, and valid for typical LH parameters in the SOL, we have 1≈ε⊥ , ε× << 

1 and 

 m
z

0 J
k
ikD ′−= ⊥  (D15) 

where we have also invoked the electrostatic limit for L ≈ i/kz.  D1α is obtained from D0α 

by the replacement Jm → Hm; D3α is obtained from D0α by evaluation inside the blob. 

Appendix E: Backward propagation and the slow wave 

In some regimes, notably the tenuous plasma regime discussed in the main text, 

the SW is a backward propagating mode, i.e. the phase and group velocities are in 

opposite directions.  In this case, the incident wave that carries energy in the positive x 

direction has kx < 0.  This can be taken into account in the formalism in several ways.  

The most straightforward is to rewrite all results using k⊥ = −kx and an incident wave of 

the form exp(−ik⊥x) = exp(−iξ cosθ).  If this is done, one finds that Jm → J−m, Hm → 
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H−m everywhere, and for an outgoing wave, the appropriate Hankel function is now 
)2(
mH−  instead of )1(

mH− .  However, owing to Bessel function symmetries, neither the 

scattered field patterns ~ Re(E) nor the scattering widths are modified.   

Physically this invariance is because the scattering problem does not follow the 

waves in time (we can examine the solutions at the time –iωt = 0) so the effect of positive 

or negative kx enters as a complex conjugation operation which does not affect the 

physical field ~ Re(E). 
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