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Abstract 

The 2D scrape-off-layer turbulence code (nSOLT), which includes 1D kinetic neutral-plasma 

interactions, is applied to study effects of neutral recycling on plasma turbulence for parameters 

illustrative of the MAST-U divertor region.  Neutral recycling is modeled by injecting a fraction 

of the parallel plasma flux to the divertor back into the simulation domain as a source of Franck-

Condon-distributed neutrals.  Stationary sources, concentrated at the magnetic separatrix, model 

plasma streaming into the divertor region from the upstream scrape-off-layer (SOL) and sustain 

plasma turbulence absent neutral recycling.  Starting from one such no-neutrals equilibrium, we 

initiate recycling in a numerical experiment designed to diagnose and identify the effects of various 

neutral-plasma interactions on the divertor plasma, divertor turbulence and plasma exhaust. The 

onset of recycling triggers an initial burst of enhanced cross-field plasma transport that is quelled 

by ionization cooling and charge-exchange (CX) friction, with growing neutral pressure, leading 

to a quiescent, turbulence-free state.  Diagnosis of this transient burst reveals that 1) the sudden 

increase in plasma density due to ionization dominates the onset of the burst, 2) electron cooling 

due to ionization increases collisionality and disconnects blob filaments from the sheath, 3) CX 

friction drives tripole polarization of a blob that can dominate the curvature-driven dipole 

polarization, leading to the stagnation of blob propagation and reduced radial turbulent transport.  

It is shown that CX friction is negligible compared to sheath physics in determining equilibrium 

mean flow shearing rates, for parameters considered herein (specifically a short connection length 

to the divertor target), while it can significantly reduce interchange-instability growth rates.  

I.  Introduction 

Neutral molecules and atoms are continuously emitted from the plasma-facing material 

surfaces in a tokamak and travel into regions of higher plasma density and temperature where 

they are dissociated and then ionized.  Thus, the plasma is fueled by recycling. The neutral atoms 

(or “neutrals,” for short) are ionized by collisions with plasma electrons, and the electrons are 

cooled in the process.  The neutrals also trade electrons with plasma ions through charge-

exchange (CX) collisions which, in most cases of interest for tokamak experiments, tend to heat 

the neutrals and cool the ions.  With increasing neutral density, charge-exchange and ionization 

(IZ) can change plasma profiles and fluctuation dynamics significantly. 

Neutral-plasma interactions in a tokamak have the potential to alter characteristics of the 

plasma turbulence that impact the confinement properties of the device.  Neutrals tend to degrade 
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confinement in experiments.  For example, the power threshold for the transition to the high-

confinement mode has been observed to increase with neutral density on NSTX.[1]  In some 

simulations, radial turbulent transport has been observed to rise, degrading confinement, due to 

the reduction in zonal flow (ZF) transport barriers caused by charge-exchange friction. [2, 3]   

The impact of neutrals on plasma transport is potentially greatest in the neighborhood of 

the tokamak divertor where the highest neutral densities are found.  There, for example, the 

neutrals can detach the upstream scrape-off layer (SOL) plasma from the divertor and so reduce, 

and spread-out, the plasma particle and heat fluxes at the divertor, importantly prolonging its 

lifetime.[4]  (While heating by the plasma energy flux is moderated by increased radiation, the 

recombination load on the divertor from the plasma particle flux is significantly reduced only by 

detachment.)  Recent validation studies, comparing turbulence simulations to a tokamak 

experiment, underscored the need to include neutral dynamics in the model equations, 

particularly in the neighborhood of the divertor.[5]   

In previous studies, we benchmarked nSOLT [6] and studied the effects of neutral fueling 

on midplane profiles.[7]  In the present paper, we model the environment of the MAST-U 

divertor and study the disconnection of blob-filaments from the divertor with increasing neutral 

density.  We determine the nature of blob propagation following disconnection, how the plasma 

exhaust power is affected by disconnection, in peak power flux and width, and we determine the 

neutral interactions that are important for initiating disconnection and moderating instability and 

zonal flows in the disconnected state. For a review of the basic physics of blobs, the  reader is 

referred to references [8] and [9]. 

Among the constantly evolving collection of  numerical simulation codes used to 

describe neutral-plasma interactions in the tokamak, the nSOLT model is arguably the most 

reduced of the fluid-plasma, kinetic-neutrals turbulence simulation codes.  More complete, but 

expensive-to-run, descriptions include the gyrokinetic PIC codes, exemplified by XGC1,[10]  

which model fluctuations down to the scale of the ion gyro-radius.  Plasma fluid simulation 

codes are less expensive than PIC codes to run since they are limited to resolve turbulent 

fluctuations in the collisional plasma regime.  The BOUT [11] and STORM [12] codes for 

example, and the many other fluid codes are based on the Braginskii fluid model equations,[13] 

as is nSOLT.  (While the kinetic neutral model in nSOLT is one-dimensional (x,vx), some neutral-

plasma interaction codes use a similar kinetic description but hold the plasma profiles fixed and 

evolve the neutral distribution functions in greater than one velocity dimension.[14]) 

Among the fluid turbulence codes, the plasma evolution may be coupled either to a fluid 

description of the neutrals, exemplified by the BOUT++ framework with trans-neut module,[15, 

16] the models of Bisai et al.,[17] and of Leddy et al.[18],  and by the nHESSEL code of Thrysøe 

et al.,[19] or to a kinetic  description of the neutrals, as in the GBS code of Wersal and Ricci,[20] 

and in nSOLT.  The nSOLT code is similar to GBS, but where GBS models the entire tokamak 

in three dimensions, nSOLT applies a unique parallel transport model on the open field lines to 

reduce the simulation domain to the plane perpendicular to the magnetic field.  In previous 

studies, that plane has been in the outboard midplane region of the tokamak, including the edge 

and SOL.  In the present study, the simulation plane is in the X-point region near the divertor 
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entrance. See Fig. 1.  The introductions of references [6] and [7] offer more complete overviews 

of the simulation landscape. 

The present work is concerned with effects of neutral interactions on plasma turbulence 

in the divertor region of the tokamak.  Conditions in this region are known to support instabilities 

capable of driving turbulence, including the wall-induced electron temperature-gradient-driven 

instability,[21] beam-type instabilities of the plasma sheath,[22] the current convective 

instability,[23] instabilities driven by geodesic curvature[24] and by normal curvature such as the 

well-known interchange instability that drives the turbulence in our simulation.  

In keeping with our mission of reduced modeling, our model divertor geometry is simpler 

than that found in other turbulence simulation codes that have machine-realistic divertor and 

magnetic field geometries.  For example, the STORM module added to the BOUT++ framework 

[12]  has been used recently to conduct fluid-plasma turbulence simulations of the divertor 

region in MAST[25] and to study detachment-induced changes in the dynamics of seeded 

filaments.[26] The GBS code was recently modified to include a divertor region by introducing 

X-point magnetic field geometry[27] and has been applied to study blob velocity scaling in a 

diverted tokamak.[28]   

The nSOLT model offers a reduced version of large-scale simulations such as GBS and 

BOUT++/STORM. While these whole-machine codes include realistic divertor regions, their 

ability to resolve details of the turbulence in those relatively small sub-volumes of the simulation 

domain is  constrained by computational resources.  The reduced model simulation we describe 

herein focuses on a small neighborhood of the divertor region, enabling resolution of details 

essential for understanding the nature of neutral effects on plasma turbulence in that region. 

The rest of the paper is organized as follows.  Section II presents the nSOLT model 

equations, in brief, with details given in Ref. [7], and locates the simulation domain with respect 

to the divertor region in MAST-U.  Section III presents results and analysis of a single nSOLT 

simulation: the turbulent response to a growing population of neutrals driven by plasma 

recycling at the divertor. Section IV presents parallel heat and particle flux diagnostics. Section 

V offers concluding remarks.  Appendix A presents the derivation of a local, linear dispersion 

relation used in the analysis of results in Sec. III. 

 

II.  Model equations 

a.  Overview 

The nSOLT model [7] describes the fluid plasma coupled to kinetic neutrals; it consists 

of four fluid equations of evolution for the plasma density (ne), the electron and ion pressures (Pe 

and Pi) and the ion fluid vorticity (-) that are coupled to the evolution of the neutral atoms by a 

kinetic equation.  The domain of the simulation (x, y) is a plane perpendicular to the magnetic 

field, with the “bi-normal” variable (y) perpendicular to the B-field and to the magnetic flux 

gradient (“radial”) dimension (x).  The kinetic equation evolves the y-averaged neutral 

distribution function, G(x,vx,t), in the radial dimension.  Only the y-averages of plasma fields 
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appear in the evolution of G, and the plasma sees neutrals that are homogeneously distributed in 

y.  This aspect of the model significantly reduces the computation burden. Although the 

fundamental neutral-plasma interactions in the model remain valid in the short mean free path 

limit, this description is most appropriate for the neutrals in the long mean-free-path regime 

because in that case the neutrals average over plasma conditions in the y direction. 

The nSOLT code was used in Ref. [7] to study turbulence in the outboard midplane (OM) 

region of the MAST-U tokamak.  In the present study, the model is configured to describe the 

divertor region at MAST-U and does not include closed B-field lines nor (for simplicity) does it 

include an electron drift wave model as it did in Ref. [7].  See Fig. 1.  In addition, the present 

implementation includes radiative (rr) and three-body (3r) recombination physics.  The new 

recombination terms are proportional to the rate coefficients, rrh  and 3rh , appearing in the 

equations.  Expressions for these coefficients are given in Eqs. (4e) and (4f) below. 

The equations are in dimensionless (Bohm) units: time is measured in units of the ion 

gyro period (ci
-1), energies (e, Te, Ti) in units of a reference temperature (Tr ), velocities in 

units of the corresponding cold ion acoustic speed (csr  =[Tr/mi]
1/2), length in units of the 

reference ion gyro-radius (sr) based on the sound speed (sr = csr (ci
-1), and density is in units 

of a reference density (nr).  We adopt fundamental parameters illustrative of a deuterium plasma 

in the divertor region at MAST-U, at the reference location indicated by the red dot in Fig. 1: B = 

7200 Gauss (ci = 3.45 x 107 rad/sec), curvature radius Rm = 90 cm, and connection length to 

the nearby target L|| = 131 cm as determined by field-line tracing from a magnetic equilibrium 

reconstruction.  These parameters result in the reference values csr  = 69 km/sec and  sr = 2 mm 

for the simulation, where the arbitrary reference temperature was chosen to be Tr = 100 eV. 

This study does not analyze particular shots from MAST-U. Rather it began before 

MAST-U operations and was, and is, intended to address general fundamental physics 

phenomena relevant to divertors.  The magnetic geometry is a generic MAST-U reference Fiesta 

equilibrium case for a conventional divertor. Nor did we use reference plasma profiles in the 

simulations.  The simulation profiles adjust self-consistently in the course of evolution, balancing 

sources against losses.  The typical width of the exhaust channel in the divertor region at 

MAST-U determined the shape and location of the source profiles shown in Fig. 2.   

Convection is by the EB velocity, vE = b  in a constant, uniform magnetic field B = 

bB directed out of the (x,y) plane.  The model considers only electrostatic fluctuations, where  

is the electrostatic potential.  We summarize the model equations of evolution here and refer the 

reader to Ref. [7] for a more thorough description. 
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Fig. 1.  The simulation plane (dashed, projected onto the RZ plane) is located within the divertor 

region of MAST-U, below the lower X-point and near the “nose” of the material wall (green).  

Contours of constant magnetic flux are shown in the background.  The simulation magnetic field 

strength is measured at the reference point (a), and the connection path (b) follows a magnetic field 

line out of the plane of the simulation to the divertor face (c). 

 

b.  Plasma density  

The equation of evolution of the plasma density (n = ne = ni) is 

 
2 3

E || ||n n e 0 rrt 3riz
n ( n) S (D n) h n n h n h n⊥ ⊥ ⊥ +   = +    −  + − −v  (1a) 

where x x y ye e⊥ =  +  .  Sn is a stationary source of plasma; the diffusion coefficient Dn  was 

taken to be a constant equal to 0.3 m2/sec, and the parallel gradient of the particle flux is  

 ( )sh||e ||e
( ) 1 n / nfloor||
x  =  −  (1b) 

where sh(x) = 2sr/L||(x).  The parallel connection length is a constant, L||(x) = 131 cm, in the 

present simulation. The substitution ||→1/L|| reduces the model to two spatial dimensions. The 

parallel flux (||e) is given in Eq. (A6) of Ref. [7].  This is one of several ‘closure’ relations that 

provide analytical expressions for parallel fluxes or currents in terms of plasma parameters 

depending on the plasma regime (e.g., sheath or conduction limited).  The factor (1 – nfloor / n) in 

(1b) is necessary because the density is maintained above an imposed “floor” value (1012 cm-3) 

for numerical expediency in the simulation.  n0 is the particle density moment of the neutral 

distribution function, G, evolved in Eq. (4a) below, and the ionization and recombination rate 

coefficients ( iz
h , rrh , and 3rh ) are given in Eqs. (4d), (4e), and (4f). 
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Experimental values for the diffusion coefficient Dn¸the thermal diffusivities e,i and the 

viscosity  discussed subsequently are, to our knowledge, poorly known in the divertor region. 

They are meant to account for processes not included in our model, such as neoclassical transport 

and micro-instabilities. The chosen values are consistent with those used in Ref. 7, and are 

similar, though slightly larger, that the effective diffusivities found near the separatrix for NSTX. 

[29] 

The stationary source Sn models plasma streaming into the divertor region from the 

upstream scrape-off layer (SOL) and includes some leakage into the private-flux region (PFR); its 

shape is indicated in Fig. 2.  The location of the maximum of Sn(x) defines the separatrix (x = 0) 

in the simulation, and the maximum value there is Sn(0) = 3.761018 cm-3sec-1. 

  

Fig. 2.  The simulation domain includes (a) a private flux region (PFR, x < 0), (b) an upstream 

source region, concentrated on −0.5 < x < 1.7 cm, where the density source (Sn) and energy 

sources (SPe,i) are indicated qualitatively by the dot-dashed curve, (c) a mid-SOL region (1.7 < 

x < 4 cm), where turbulence-spreading is observed, and (d) the far-SOL (4 < x < 8.8 cm), 

bounded by the “nose” of divertor. [Associated dataset available at 

https://doi.org/10.5281/zenodo.7254770] (Ref. 39). 

 

c.  Plasma pressure 

The electron and ion pressure evolution equations are, respectively,  

https://doi.org/10.5281/zenodo.7254771
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E

2 3

n0 FC

e e 0 || ||ee et iz iz

rr e 3r iz0

eP

3n 3n 3
T (v T ) S ( n T ) h n n E Q

2 2 2

3
h n T h n E S nE

2

 
 +  = +    − −  

 

− + −

 (2a) 

and 

 

E || ||

0

2 3

i
i i i

0 0

t i i

cx cxiz i

rr 3ri i

P

3n 3n 3
T (v T ) S ( n T ) Q

2 2 2

3
(h +h )n n E h n n T

2

3 3
h n T h n T  .

2 2


 
 +   = +    −  

 

+ −

− −

 (2b) 

SPe and SPi  are stationary heating sources.  The thermal diffusivities e,i are constants 

equal to 30 m2/sec.  The parallel heat flux gradients, ||Q||e,i , are given explicitly in Eqs. (A16) 

and (A17) of Ref. [7] and are similar in form to Eq. (1b).   The ionization, charge-exchange and 

recombination rate coefficients ( cxh , 
iz

h rrh , and 3rh ) are given in Eqs. (4c), (4d), (4e), and 

(4f).  n0 and n0E0 are the neutral particle and energy density moments of the distribution function, 

G, evolved in Eq. (4a). 

The stationary sources, SPe and SPi, model plasma streaming into the divertor region from 

the upstream scrape-off layer (SOL) and have the same shape as Sn(x); they are indicated in Fig. 

2.  Their maximum values are SPe,i(0) = 60 MW/m3 in the simulation. 

In Eq. (2a), Eiz0 = 13.6 eV is the ionization energy and Eiz is the “ionization cost” 

responsible for cooling the electrons in the presence of neutrals.  We take Eiz = 50 eV in the 

simulation.  Sn0 = Sn0 (x) is the source of Franck-Condon (FC) recycled neutrals, defined by Eq. 

(5a) below, and EFC = 3 eV is the dissociation energy.[2,6] 

 

d.  Vorticity and the electrostatic potential 

With the ion diamagnetic drift given by vdi = b Pi , the total ion fluid momentum 

density is E din( )+v v , and the component of its curl (i.e.,  the generalized vorticity) along b is 

 
2 2

E di i
n( ) n n P ρ ⊥ ⊥ ⊥ ⊥ + =  +  +  −b v v . (3a) 

Given n, Pi = nTi and , Eq. (3a) is solved for the electrostatic potential () at each time step. 

The evolution of  is as follows. 
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( ) 2
e i || ||

2 2 2 2
e di E i E i e E

t x y y xρ 2b κ (P P ) ρ

1 1 1
     n v v ( P ) (v P ) b n v

2 2 2

jd f f 



= −   + −  −  −  + 

   +  −   −   −  
   

 (3b) 

Here, x sr m/ R=  = −κ b b e is the curvature vector ( sr m2 / R  is the dimensionless 

curvature parameter.);  is the coefficient of viscosity, taken to be constant at 30 m2/sec;  f is the 

neutral friction force density,  

 
( )

( ) ( )

iz 0 e 0 cx 0 i 0 E di

2
rr i e E di 3r i e E di

h n n h n n

h n n h n n  ,

= + − −

− + − +

v v v v

v v v v

f
 (3c) 

and v0 is the neutral fluid velocity.  The radial component of v0 (v0x) is given by the vx-moment 

of the neutral distribution function, G, and the evolution of the bi-normal component (v0y) is 

given in Eq. (4b) below.  The parallel current gradient, || j||, is given in Eq. (A11) of Ref. [7]. 

e.  Neutral distribution function 

The evolution of the neutral species is described by the following equations. 

 
x 0 i i e

2
e i e i n0 FC

G G
v h n F h n G h n Gcx cx izt x

h n F h n F  Srr 3r f

 
+ = − −

 

+ + +

 (4a) 

 

( )

t 0y 0x x 0y n0 0y
0

2
i e i e

i Ey diy 0y
0 0

1
v v (v ) S v

n

n n n n
h n h h v v vcx rr 3r

n n

 = −  −

 
+ + + + − 

 
 

  (4b) 

  

 

Here G = G(t,x,vx) is the 1D neutral species distribution function, and Fi = Fi(t,x,vx) is a 1D 

Maxwellian distribution function based on the y-averaged ion density and temperature, 

 

 
2 1/2

i x i iiF n exp v / (2T ) / (2πT ) = −
 

.  

 

Only the y-averages of plasma fields, denoted by overbars (e.g., 
i

n ), appear in the evolution of 

G, and the plasma sees neutrals that are homogeneously distributed in y.  If the 3D neutral 

distribution function is denoted by g, then x y zG(x,v , t) v v  d d g=  , and we have assumed no 

parallel (z) dependence.  In Eqs. (4), ne = ni  n; the distinction is purely to elucidate the 

underlying physical processes. 
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The form of the convective derivative in (4b) involves a closure ansatz for the vxvy-

moment of g .  We indicate the result of that ansatz and the evolution of G, derived from the 

kinetic equation for g, and refer the reader to reference [6] for the derivations. 

The charge exchange and ionization rate coefficients are similarly based on y-averaged 

electron and ion temperatures: 

 14 0.3 1/2 3
cx i i ih (T ) 1.1 10 T (x,t) M   m /sec − −=  and  (4c) 

15 1/2 3
iz e e e eh (T ) 8 10 T (x,t) exp 13.56 / T (x,t) / (1 0.01T (x,t))  m / sec−  =  − +   (4d) 

where the temperatures are expressed in eV and Mi in AMU (Mi = 2 for D).  These formulaic 

rates are fits to tabulated values of the collision rates that are used in kinetic neutral Monte Carlo 

simulations. [30]  The recombination rate coefficients are similarly given in terms of the y-

averaged electron temperature: [31] 

 

1/2

20 1/3 3iz0
e iz0 e iz0 e

e

E 1
h (T ) 5.2 10 0.43 ln(E /T ) 0.469(E /T )   m / secrr

T 2

− −   
=  + +   

  
 (4e) 

 
39 4.5 6

e e3rh (T )  8.75 10 T m / sec− −=   (4f) 

Notice that hcx, hiz, and hrr have the units of area times velocity, and are often denoted by 

“vcx” , etc., where  represents the cross-section for the particular scattering process, while 

the 3-body rate coefficient, h3r, has the units of v/density.  (Recombination is negligible in the 

present simulation where Te is maintained above a floor of 1 eV for the sake of numerical 

stability.) 

The charge-exchange and ionization rates have the units of inverse time and are given by 

the products of the neutral density with the respective rate coefficients, viz., 

 0cx cxn h =  (4g) 

and 

 0iz iz
n h = . (4h) 

f.  Neutral recycling 

The source of neutrals, Sn0 fFC in Eq. (4a), is provided by converting a fraction of the 

plasma parallel particle flux (||e) to neutral atoms assumed to originate in fully dissociated D2 

molecules: 

 xL

n0 || ||e0 y
S (x) R(x)=   dx  (5a) 
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and 

 
2

2 1/2
FC x x D FC FC(v ) exp[ (v v ) / 2T ] / (2πT )f = − − , (5b) 

where 
2

Dv is taken to be -0.8 km/sec, corresponding to room temperature (300 K) D2 

molecules, and TFC is the Franck-Condon (FC) temperature, taken to be 3 eV.  This is a time-

dependent fueling source distributed throughout the simulation domain according to the profile 

function R(x), equal to A cos[ (x-xsep)/(Lx-xsep) /2], with  the coefficient A chosen so that the 

x-integral of R(x) is equal to a prescribed constant, R0, the neutral recycling fraction.  R0 is equal 

to 1 in the simulation.  Note that in the nSOLT model, the divertor target plate is at a distance L|| 

out of (perpendicular to) the simulation plane: in this divertor simulation, neutral recycling from 

the target is therefore modeled everywhere in the (x,y) plane. 

 

g.  Boundary conditions 

All plasma fields (n, Te, Ti, ) are periodic in y.  The fluctuations in these fields (e.g., 

n n n = − ) vanish at both radial (x) boundaries.  The radial gradients of the density and 

temperatures are held to zero at x = 0 so that their diffusive fluxes vanish at that boundary.   The 

mean potential ( ) is equal to 3 eV at the PFR boundary (x = 0), and its radial gradient (

Eyx v = ) is equal to zero at x = Lx; these boundary conditions are used to solve Eq. (3a) for 

the potential. 

The distributions of neutrals that are leaving the simulation at the boundaries, i.e., 

G(x=0,vx<0) and G(x=Lx, vx>0), evolve solely by convection; these departing neutrals "free-

stream" through the boundaries.  Each departing neutral is replaced with an entering neutral with 

the opposite velocity, maintaining zero net particle flux at the boundaries. In other words, the 

neutrals are reflected at the boundaries:  

 x xx xG(x = L , v 0) G(x = L , v 0) =  and x xG(x = 0, v 0) G(x = 0, v 0). =   (6) 

G is held to zero at the boundary of the velocity domain which extends to () 4cs (280 km/sec), 

which is sufficient to contain the observed extent of G in the simulation. 

 

h.  Numerical methods 

The overall updating of the plasma fields in nSOLT (n, Te, Ti, ) is split-step: to each 

monomial term in the evolution equations there corresponds a subroutine that solves an initial 

value problem starting from the fields updated by the previous subroutine in the calling sequence 

of the main time loop.  The algorithm used in the convection subroutine is flux-corrected 

transport (FCT) [32], chosen for its exceptional ability to resolve steep propagating fronts, e.g., 

blobs.  The alternating-direction implicit (ADI) algorithm [33] is used to advance the fields by 
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linear diffusion [i.e., terms proportional to Dn, e,i, and  in Eqs. (1a), (2a, 2b), and (3b)].  The 

fields are updated explicitly by the parallel flux gradients (
|| ||e || ||e || ||i

, Q , Q    )  and by the 

sources (Sn, SPe, SPi).  The electrostatic potential () is found by solving Eq. (3a) by the 

relaxation method of Angus and Umansky. [34] 

The evolution of the neutral distribution function (G) is in three steps: free-streaming by 

upwind linear interpolation, CX update by a 2nd order Runge-Kutta method, and explicit updates 

for ionization and recombination.  (The plasma fields are taken as fixed over a single time step, 

t.)  The free-streaming update is constrained by max(|vx|) t/x < 1, where here vx is the 

independent velocity variable of the neutral grid (x,vx).  With max(|vx|) ~ cs and x ~ s, this 

constraint amounts to t < i
-1 which imposes no greater computational burden than required to 

maintain accuracy and stability, where t ~ 10-2 i
-1 is typical in practice. 

 

III.  Ionization burst 

a.  Overview 

Without neutrals in the simulation, the stationary sources (Sn, SPe,i) sustain a turbulent 

plasma equilibrium.  The sudden introduction of neutral recycling causes a sharp rise in the 

plasma density and a sharp fall in the electron temperature.  While the neutral density increases, 

this “burst” subsides, and a quiescent plasma state emerges; the plasma fields saturate while the 

neutral density continues to grow.  Radial profiles of the plasma density and pressures are shown 

in Fig. 3 at three times: before neutral turn-on, at the peak of the burst, and at the end of the 

simulation after the burst has subsided.  It can be seen from Fig. 3 that, at the peak of the burst, 

the density profile (red) has two local extrema, one at the separatrix (x = 0), where the density 

source Sn is maximized, and the other at x = 1 centimeter, which effectively shifts the overall 

profile farther out into the SOL compared to the source and compared to the pre-burst plasma 

profile (black).  After the burst, the equilibrium density profile (green) is also shifted outward 

compared to the source and to the pre-burst equilibrium profile.  It appears that the outward 

shifts of the burst profiles (red) are caused by the enhanced (blob) radial transport during the 

burst and that the shift seen in the post-burst profiles relative to both the pre-burst and burst 

profiles, is due to ionization.  The green profiles lack the apparent skewness of the black and red 

curves that are likely due to blob transport.  Instead, these approximately Gaussian equilibrium 

profiles are determined by balancing diffusion against sources including ionization and charge 

exchange in the wake of the burst. 

We analyze the burst in detail to characterize the roles that neutral ionization and charge-

exchange play in its evolution.  It is hoped that the analysis of this particular event, in our 

numerical experiment, will prove useful in understanding the divertor environment at MAST-U 

and in general. 
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Fig. 3.  Profiles of the plasma density (a), and of the electron (b) and ion (c) pressures at three 

times: before neutral turn-on (t = 0.72 ms, black curves), at the peak of the burst (0.87 ms, red 

curves), and at the end of the simulation (1.45 ms, green curves).  The neutral density (n0) profiles 

are shown in (a) as dashed curves at the same times.  [Associated dataset available at 

https://doi.org/10.5281/zenodo.7254770] (Ref. 39). 

During the burst, the radial plasma particle flux [⊥ = nvx] increases 7-fold, 

compared to the pre-neutrals turbulent flux, but vanishes in the wake of the burst; the growing 

neutral density subsequently eliminates turbulent plasma perpendicular transport and reduces the 

parallel heat exhaust, particularly in the electron channel.  See Fig. 4.  Notice, however, that the 

plasma parallel particle flux, shown dashed in Fig. 4(b), is larger during and following the burst, 

than it is before the introduction of neutrals, to accommodate the ionization source. 

https://doi.org/10.5281/zenodo.7254771
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Fig. 4. Histories of the bi-normal (y) averages of (a) ne, n0, Ti, and Te, (b) the turbulent particle 

perpendicular flux, ⊥ = nvx, and the electron parallel particle flux [||e, Eq. (A6), Ref. 7], 

times 0.01 (dashed), and (c) the electron and ion parallel heat fluxes [Q||e,i, Eqs. (A16) and (A17), 

Ref. 7] at x = 1.7 cm (the average location of the maximum value of the interchange instability 

growth rate mhd).  The dashed vertical line indicates the time at which neutral recycling begins. 

[Associated dataset available at https://doi.org/10.5281/zenodo.7254770] (Ref. 39). 

Although a recycling coefficient of unity was employed, causing the divergence of n0, the 

plasma fields are apparently approaching equilibrium because the electron temperature has been 

reduced by ionization cost to the point where the ionization rate is small.  [With reference to Eqs. 

(4d) and (4h), hiz goes to zero exponentially fast as Te drops below the ionization potential 

(13.56 eV) and it does so faster than the neutral density grows so that the ionization rate, iz = 

n0hiz, approaches zero.]  In fact, from Fig. 4(a) it is seen that once n0 surpasses the plasma 

density ne, following the burst (i.e., t > 1.0 ms), the plasma evolution is nearing saturation. The 

charge exchange rate, Eqs. (4c) and (4g), does continue to grow with n0; however, this forces Ti 

https://doi.org/10.5281/zenodo.7254771
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to approach 2/3 E0 in the emerging equilibrium, and the ions cease to be cooled by charge 

exchange; see Eq. (2b). 

The remainder of Sec. III is organized into four parts: In (b), we compare the measured 

fluctuation growth rate (n), the interchange instability growth rate (mhd), and the CX damping 

rate (CX), together with the spatially averaged E×B flow shearing rate, x Eyv   , from the 

burst.  A linear dispersion relation guides interpretation of these measurements.  In (c), an 

expression for the equilibrium shearing rate is derived that enables comparison between CX and 

characteristic sheath frequencies in determining the shearing rate.  In (d), we show that the 

increase in collisionality at the onset of the burst disconnects blob filaments from the divertor 

sheath.  Finally, in (e), CX friction, acting on the ion diamagnetic drift in the vorticity equation, 

is shown to overtake the curvature force, turning off the turbulent particle flux at the end of the 

burst. 

 

b.  Ionization cooling, charge-exchange damping, and a local linear dispersion relation 

The CX rate ( CX CX 0h n = ), the interchange growth rate (
1/2

mhd s pc / (RL ) = ), and the 

shearing rate of the mean E×B flow ( x Eyv ) are plotted in Fig. 5(a).  Here 1/Lp = −(/x) ln P 

defines the pressure gradient scale length. The IZ rate, 
0iz iz

h n =  , and the growth rate of the 

plasma density fluctuation, 
2 1/2

r.m.s. r.m.s. yn
(d/dt)ln( n) , where n n


 =   =   are plotted in Fig. 

5(b).  These rates are measured at the time-averaged radial (x) location of the maximum value of 

mhd , which is at x = 1.7 cm in both the pre- and post-neutrals phases of the simulation.  The 

magnitude of the shearing rate is averaged over a 20 s window ending at time t.  Averaging the 

shearing rate removes high frequencies that would obscure the comparison in Fig. 5(a);  the 

plasma pressure profile is comparatively quiet. 

With the onset of neutral recycling and ionization, the plasma grows denser and colder.  

The burst begins with neutral turn-on at t = 0.72 ms and lasts until about t = 0.9 ms, during which 

time Te 
 falls from 24 eV to 3 eV at the reference location (x = 1.7 cm), and ne rises from 1× 

1013 cm-3  to 7×1013 cm-3.  See Fig. 4(a).  During the burst, mhd decreases from 1.5 to 0.7 s-1, 

due to ionization cooling of the electrons and CX cooling of the ions.  A drop in the shearing rate 

is observed and will be attributed to the drop in Te, later in the paper [Sec. III(c)]. 

Early in the burst, the growth rate of the density fluctuations (n) increases to a 

maximum of 0.04 s-1.  See Fig. 5(b).  At this maximum and until t = 0.8 ms, the growth rate is 

approximately equal to iz, which is seen to be decreasing as Te decreases.  Both the mean 

plasma density and the density fluctuation grow at the ionization rate, preserving n/n during the 

burst, and subsequently decay.  A local linear dispersion relation enables further analysis of the 

burst. 
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Fig. 5. (a) Histories of (i) the growth rate of the “bare” interchange instability, 
1/2

mhd s pc / (RL ) =

(solid), (ii) the charge exchange damping rate, cx (dashed), and (iii) the magnitude of the flow 

shearing rate, x Eyv=  , averaged over a 20 s window (dot-dashed).  (b) Histories of (i) the 

growth rate of the density fluctuation r.m.s.n
(d/dt)ln( n)


 =  (solid), and (ii) the ionization rate iz 

(dashed).  The dashed vertical line indicates the time at which neutral recycling begins. [Associated 

dataset available at https://doi.org/10.5281/zenodo.7254770]  (Ref. 39). 

 

A local, linear dispersion relation (LDR) is derived from a reduced set of the model 

equations in Appendix A:   

 ( )( ) 2
E E *i mhd E Scxˆω ω +i ω ω ω i(ω ω )ω− − − = − − −  , (7a) 

where the subscripted quantities in (7a) are given above and in the appendix.  In particular, E is 

the Doppler shift from the EB drift, i is the ion diamagnetic frequency, and the loss of charge 

due to the parallel current is represented by the sheath frequency, 

  ( ) ( )
1 1

S
S 2 2 2

||
2

ˆc ωs ˆ ˆω = 1 1
ωL k k nL

||

− −
+  → + 

s




, (7b) 

with 

 
1/2

eS C i

ωˆ / 0.51(1 T / T )
ω

  = +   , (7c) 

https://doi.org/10.5281/zenodo.7254771
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and  
ei ||

e sr

L
 

 
. (7d) 

̂ is the ratio of sheath to collisional conductivities, 
S C

ˆ / =  , and  is the blob collisionality 

parameter.[9]   In Eq. (7b), the first form expresses S in terms of dimensional quantities, and 

the second term gives it in terms of dimensionless quantities, where the dimensionless sheath 

conductivity, S̂ , is given by Eq. (A22).  The plasma fields (n, Pe,i, Te,i) are represented by their 

bi-normal (y) averages, and the frequency in the plasma rest frame is E = −  .  

Equation (7a) will be recognized as containing the minimal physics required to describe 

interchange instability as well as the so-called conducting-wall mode or Te sheath 

instability.[35]  Formally replacing    with unity in Eqs. (7b) and (7c) corresponds to the 

neglect of electron temperature fluctuations in deriving the dispersion relation: for simplicity this 

is done in the remainder of this section. In this case, s is independent of frequency. For the 

parameters of the present simulation, the interchange drive dominates over the conducting-wall 

drive, (for which electron temperature fluctuations are essential) but the sheath term is 

nevertheless important, as described next. 

All of the subscripted quantities in (7a) depend on the wave numbers (kx, ky).  We solved 

the LDR (7a) for  using kx = 0 and ky = 1.40 cm-1.  This choice of ky maximizes the energy 

spectrum of the density fluctuations at x = 1.7 cm in the simulation at all times leading up to 

and including the burst and corresponds to the mean poloidal spacing between blob filaments.  

The choice of kx = 0 corresponds to a long radial filament (i.e., long relative to the bi-normal 

scale of the structure) or “streamer.”  (It is true that fully formed blobs have a finite radial 

structure. However, the so-called blob dispersion relation, obtained with kx = 0 and k⊥ ~ ky ~ 

1/b where b is the blob radius, captures the qualitative features of blob dynamics surprisingly 

well. See for example Ref. 9, Sec. V.2 “Blob correspondence principle.”) 
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Fig. 6. (a) Real and (b) imaginary parts of the frequency predicted by the local dispersion relation 

(LDR), Eq. (7a), for the mean fields from the simulation, measured at x = 1.7 cm.  The wave 

numbers were taken to be kx = 0 and ky = 1.40 cm-1.  Approximations (8a) and (8b) are plotted in 

red and blue, respectively.  The dashed horizontal lines in (a) indicate the dominant mode found 

in the power spectrum of the density fluctuations at x = 1.7 cm.  The dashed vertical line indicates 

the time at which neutral recycling begins. [Associated dataset available at 

https://doi.org/10.5281/zenodo.7254770] (Ref. 39). 

 

Prior to neutral recycling (
CX

 = 0), the LDR has an unstable mode at R =  − s-1 , on 

time-average, corresponding to a phase velocity of R/ky = − cm/s.  See  Fig. 6.   This 

phase velocity is two times the simulation value, − cm/s, measured from the power 

spectrum of the density fluctuations.  The LDR growth rate is I =  0.75 s-1 which is better 

approximated by S

2
mhd

/ ω  (1.0 s-1) than by mhd
  (1.7 s-1).  So, the LDR mode may be 

described approximately as a sheath-moderated interchange mode,[36] i.e., the solution of (7a) in 

the limits S mhd
ω    and S *i

ω ω , viz., 

 
2

E Smhd
ω ω / ω→ + i . (8a) 

From Eq. (7b), it is apparent that plasmas of low collisionality are more likely to support this 

mode than are plasmas of high collisionality where S is small and electrical connection to the 

divertor target is lost.  Finally, it is worth noting that the phase velocity of the fluctuations in Eq. 

https://doi.org/10.5281/zenodo.7254771
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(8a) is reduced from vE to zero if Te fluctuations are retained in the simple advective limit of 

Eq. (A8.1). Thus, an intermediate response of Te, which appears to be more representative of 

the simulation, would bring the LDR-predicted phase velocity into better agreement with the 

simulation value. 

In the high (Coulomb) collisionality limit, with cx = 0, one theoretically recovers the 

interchange mode at  = imhd.  During the burst, as the plasma density increases from 

ionization, and the electron temperature decreases, the collisionality does increase dramatically.  

However, the interchange limit is not observed, i.e., the observed growth rates do not increase.  

Instead, as described next, cx dominates the dispersion relation.  This is likely related to the fact 

that the charge exchange cross-section is larger than the ionization cross-section. 

From the onset of neutral recycling, 
CX

 grows roughly linearly with time, eventually 

surpassing all of the other subscripted rates in (7a).  In the limit CX Eν ω ω − , mhd, s we 

find  

 CX

CX

2
*i mhd

E
S

ˆω i /ν
ω ω

ˆ1 /ν

+ 
→ +

+ 
. (8b) 

The phase velocity approaches vE + vdi, and CX damping directly mitigates the interchange 

instability, potentially eliminating it by acting in combination with other stabilizing mechanisms 

(e.g., diffusion) not included in (7a).  There is evidence for this limiting behavior in the burst. 

After the onset of neutral recycling, the power spectrum of the density fluctuations in the 

simulation is dominated by the burst, as the energy in the fluctuations decreases rapidly 

thereafter.  That spectrum indicates a phase velocity of − cm/s (R = − s-1), increased 

from the pre-neutrals value of − cm/s (R = − s-1).  The LDR prediction and the limit 

(8b) are in good agreement and predict a slowly changing frequency in a neighborhood of the 

simulation result.  See Fig. 6(a). 

During the burst, vE increases from its pre-burst value of − cm/s to − cm/s.  This 

decrease in magnitude is initially due to the reduction in B (3Te) caused by ionization cooling, 

while the plasma remains connected to the sheath, and continues after the burst due to the 

growing neutral friction drag.  As a result, *i dominates the dispersion of plane waves in the 

aftermath of the burst. 

Later in the paper, Sec. III(e), the radial propagation of blobs during and after the burst is 

investigated.  The blob velocity vb is qualitatively related to the growth rate from linear theory, 

I yb
v ~ / k , according to the correspondence principle.[9]  We digress to investigate that here.  

As cx increases and the electrons cool, s becomes negligible and, neglecting E as just 

discussed, (8b) is approximately 
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CX

2
mhd

*i

i
ω ω

ν̂


= + . (8c) 

The condition for R > I is therefore, reverting to dimensional units with kx = 0,  

CX

2
*i mhd

ω ν   . Noting that 2
mhd s p
2 ~ 2c / (RL )  and for cs ~ vti , i y s s p~ k c / L   one obtains  

 i
cx

y

2
ν

k R


 . (8d) 

as a rough condition for the frequency to be dominantly real.  In dimensionless variables this 

condition is just   kycx,  where  = 2sr/R is the normalized curvature parameter. We will see 

that this defines a critical blob size aDQ ~ cx/.  Larger blobs will be dominated by the usual 

interchange forces in mhd and propagate radially, smaller blobs, with  real, will have an 

incorrect phase relationship between n and  for radial propagation.  This will be explored in 

more detail in Sec. III(e). 

 

c.  Neutral effects on mean EB flow 

A radially sheared E×B flow can moderate the interchange instability or provide a barrier 

to radial transport.[37]  In either case, a reduction in the shearing rate caused by the onset of CX 

damping might be responsible for the burst of turbulent flux, as seen in other works.[2,3]  We 

derive an expression for the shearing rate in equilibrium that allows us to explore this possibility.   

In equilibrium ( t 0 = ) and in the limit of cold ions (Pi = 0), an equation may be obtained 

from the poloidal (y) average of Eq. (3b): 

 

( ) ( )

x x x y x x y cx y

3/2e
sh s B e sh e B ||

ei0

xn v v n v v ν nv

nc / T ,  1.96 T / L 0.
ν

 −  +  − 
 

  
+ − − = 

  

   

     
 (9a) 

(We use the cold ion approximation here for simplicity, despite the fact that the local ion 

pressure gradient is competitive with that of the electrostatic potential.)  In Eq. (9a), both the 

overbar and angular bracket denote the y-average, and we have replaced || ||j  by a choice 

between the sheath-limited (SL) and collision-limited (CL) forms, viz., ( )sh s B enc / T−    

and ( )3/2e
sh e B ||

ei0

1.96 T / L
ν


−   , respectively, within braces.  The smaller of the two in 

absolute value is the one that is applicable.  This is a jump-discontinuous approximation to the 

Padé expression used in the nSOLT model.[7]  We have also made the Boussinesq 
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approximation by ignoring the density gradient in the expression for the generalized vorticity, 

but the fluctuating density is retained. 

Integrated over x, and to lowest order in the fluctuations, Eq. (9a) becomes 

 

( ) ( )

x y x x y cx y

3/2e
sh s B e sh e B ||

ei0

n v v n v v ν nv

nc / T ,  1.96 T / L 0,
ν

 − +  −
 

 
+ − − = 

 

x

dx

   

     
 (9b) 

where the prime denotes differentiation with respect to x.  Defining the potential gradient scale 

length ( L ) by yv / L=    , the flow shearing rate is given by 
2

yv / L =  .  Replacing 

with 
2

yv L
  and yv  with yv L

 , and assuming that the integrands in (9b) are approximately 

constant on domains of length L , we obtain 

 

( ) ( )

x y x x y cx y

2 3/2 2e
sh s y B e sh e y B ||

ei0

n v v n v v ν nL v

L n c v L / T ,  L 1.96 T v L / L 0.
ν

 − −  −

 
 + − − = 

 



   

   

   
 (9c) 

Solving (9c) for the shearing rate, we find 

 

3/2
e e

x x y sh B s e
ei0 ||

y
3/2

2 e e
x cx sh s e

ei0 ||

T
v v / L c / T ,  1.96

ν nL
v .

T
n v /nL ν L c / T , 1.96

ν nL

  
 +  

   =
   
 − − +  
    



 

   

  

 (10) 

Equation (10) suggests that charge exchange damping (cx) mitigates sheared flow driven 

by the gradient of the Reynolds stress, x x yv v   .  If the pre-neutrals turbulence were driven 

by interchange instability moderated by sheared flow, or if the sheared flow were providing a 

transport barrier, then the introduction of neutrals could cause a burst of turbulence by reducing 

the shearing rate.  Then, with growing cx, the interchange instability growth rate would be 

reduced, c.f., Eq. (8b), and the recently unleashed turbulence would subside.  This scenario is 

qualitatively consistent with the observed burst but does not appear to be at work in the 

simulation. 

As seen in Fig. 5(a), the shearing rate is significantly less than mhd 
 at all times, and it is 

doubtful that it is moderating the interchange-driven turbulence, either before or after the onset 

of neutral recycling.  (A comparison of fluctuation scale lengths to pressure profile scale lengths 

suggests that profile gradient modification, i.e., the mixing length estimate with n/n ~ 1, is the 
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saturation mechanism in the pre-neutrals phase of the simulation.)  Nor is a sudden drop in the 

shearing rate observed just before or immediately upon neutral recycling; the averaged shearing 

rate of Fig. 5(a) actually increases at the start of the burst.  In fact, for the parameters of the 

simulation, CX damping is negligible in determining the equilibrium flow in comparison with 

sheath physics. 

The individual expressions appearing in Eq. (10) were calculated from the simulation and 

their root-mean-square (rms) values, taken over the SOL (x > 0) at each instant of time, were 

compared.  [For example, rms( ) is defined as  ( ) ( )
1/2

2

x > 0
rms


=  .  Note that this is a radial 

(x) average of the over-barred, i.e., y-averaged, field  .]  The scale length squared ( 2L ) was 

taken to be the ratio rms( ) / rms( yv ) from the simulation.  It was found that the terms 

proportional to sh in Eq. (10), i.e., the parallel current terms, dominate all other terms before 

and after the onset of neutral recycling.  [For example, in the pre-neutrals phase of the simulation 

the current is sheath-limited; the rms first (SL) term in curly brackets in the numerator is 6.3±0.2 

s-2 and is smaller than the rms second (CL) term, 150±20 s-2, and both dwarf the rms 

Reynolds term, 0.035±0.01 s-2.]  It follows that, on average in the SOL, a good approximation 

to Eq. (10) is  

 B
y 2 2

3Tev .
L L

 = =

 


 (11) 

In other words, the shearing rate is just the second derivative of the equilibrium sheath potential.  

The dominance of sheath or collisional physics over charge exchange in determining the 

shearing rate is due in part to the short connection length to the divertor target for the simulation 

plane considered here. The rms average of Eq. (11) is compared to the rms shearing rate from the 

simulation in Fig. 7.  We note that 2L decreases from 1.8±0.2 cm2 to 0.5 cm2 upon neutral 

recycling while rms( Te ) falls from 1.5 to 0.2 eV in the SOL, accounting for the reduction in yv

by about one half according to Eq. (11) and seen in Fig. 7. 
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Fig. 7. The root-mean-square (rms) E×B flow shearing rate in the SOL from the simulation (solid) 

and predicted by Eq. (11) (dashed). [Associated dataset available at 

https://doi.org/10.5281/zenodo.7254770] (Ref. 39). 

Thus, ionization cooling of the electrons dominates the observed reduction in E×B flow 

shearing following the onset of neutral recycling.  The corresponding increase in collisionality 

disconnects the plasma filaments from the sheath, as we discuss next. 

 

d.  Disconnection by ionization cooling 

At the onset of neutral recycling, ionization decreases the electron temperature and 

increases the plasma density, and so the collision frequency, 
3/2

e eei
~ n / T , increases.  In the 

limit that the parallel collisional resistivity (1/C) is much greater than sheath resistivity (1/ S), 

the plasma blob filaments are insulated, or disconnected, from the sheath.  The ratio of 

conductivities, S C
ˆ / =   , c.f. Eq. (7c), serves as a disconnection parameter.  In the limit of 

infinite ̂ , the sheath frequency (s) vanishes from the LDR, Eq. (7a), suggesting a change in 

blob dynamics with disconnection.  For example, it has been shown that disconnected blobs 

propagate radially faster than connected blobs,[9] in the absence of neutral interactions. 

The y-averaged disconnection parameter at the reference location (x = 1.7 cm) is plotted 

in Fig. 8.  (We set  / 1 →   in Eq. (7c) and plot the result, which is independent of frequency, 

in Fig. 8 for simplicity, formally ignoring the effect of temperature fluctuations in the LDR.)  

The plasma is sheath-connected prior to the onset of neutral recycling and is disconnected by the 

burst, and it remains disconnected following the burst.  In Fig. 9, snap shots of the disconnection 

parameter in 2D are compared with snap shots of the normalized density fluctuations, at times 

before and after the onset of neutral recycling.  It is seen that at the earlier time, Fig. 9 (a and b), 
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the larger blob fluctuations ( e en / n 1  ) have 
S C/ 1   and are, therefore, sheath-connected.  

At the later time, Fig. 9 (c and d), but before peak disconnection is observed at x = 1.7 cm (Fig. 

8), the larger blob fluctuations have 
S C/ 1   and are disconnected. 

  

Fig. 8.  History of  the y-averaged ratio of sheath to collisional conductivities, S/C ,  [Eq. (7c) 

with / 1 → ], at the reference location (x = 1.7 cm).  Values (less, greater) than one indicate 

that (sheath physics, collisionality) is limiting the parallel current. [Associated dataset available at 

https://doi.org/10.5281/zenodo.7254770] (Ref. 39). 
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Fig. 9. (a) Normalized density fluctuation, e en / n , and (b) disconnection ratio, S/C [Eq. (7c) 

with / 1 → ] at t = 0.3 ms, before the start of neutral recycling: Blobs ( e en / n > 1) are sheath-

connected (S/C < 1).  (c) and (d): As in (a) and (b), respectively, but at t = 0.8 ms, after neutral 

turn-on:  Blobs are disconnected (S/C > 1) from the sheath by collisionality. Note the difference 

in palette scales. [Associated dataset available at https://doi.org/10.5281/zenodo.7254770] (Ref. 

39). 

As mentioned above, disconnected blobs are expected to move faster radially than 

connected blobs, absent neutral interactions.  Indeed, the radial particle flux (⊥) increases 

dramatically following the onset of recycling.  However, this transport burst is dominated by the 

initial increase in the plasma density due to ionization, and the flux subsequently falls to zero in 

the wake of the burst.  See Fig. 4. 

As discussed in Sec. III(b) above, the combination of disconnection (s→0), driven by 

increased collisionality, and growing charge-exchange damping (cx→∞), leads to a transition 

from interchange-dominated dispersion (2 ~ −mhd
2) to a purely real frequency mode ( ~ *i).  

According to the blob correspondence principle, this implies a transition from radially 

propagating blobs (vb ~ I/ky) to non-propagating blobs, i.e., to blob stagnation, and could 

account for the observed loss of turbulent transport in the wake of the burst.  We explore this 

picture with spatially-localized (blob) diagnostics in the next section. 

 

e.  Blob stagnation by CX friction 

https://doi.org/10.5281/zenodo.7254771


25 

 

The equation of vorticity evolution (3b) is the curl of the ion momentum density 

evolution equation in which the x-component of the neutral friction force f , Eq. (3c), is seen to 

compete with the x-directed curvature force, (Pe + Pi).  Translated into the vorticity evolution 

equation, that competition is between y x− f and e i2b (P P )−   +κ .  In particular, we focus on 

the charge-exchange component of y x− f , i.e., 2
cx i di, x cx y iy n v P = −   , which is proportional 

to the second derivative of the ion pressure.  The curvature drive, 

e i y e i2b (P P ) (P P )−   + =  +κ  , on the other hand, is proportional to the first derivative of the 

total pressure and, acting on a localized fluctuation (blob or streamer), drives the bi-normal (y) 

dipole charge fluctuation that is responsible for radial blob propagation.[9]  The CX force, acting 

alone on a blob, would tend to drive a tripole charge fluctuation in the y direction resulting in no 

net radial propagation.  In fact, the E×B velocity field inferred for such a charge distribution 

would tend to tear the blob in half with the top and bottom (in y) portions moving in opposite 

directions. The smaller structures resulting from a repetition of this process will dissipate.   

In addition, the central portion of the blob with its monopole field causes rotation (spin) 

of the charge dipole. This nonlinear effect converts radial motion into poloidal motion, and at 

sufficiently large rotations, causes charge mixing. See the discussion of blob spin in Refs. [8] and 

[9]. These effects reduce the usual dipole-induced radial motion of the blob.  Thus, even though 

the dipole effect is still present, once the tripole effect is competitive, radial motion begins to be 

suppressed. As discussed in Sec. III(b), suppression of the dipole charge itself occurs when cx > 

mhd. 



26 

 

  

Fig. 10.  Histories of (a) dipole (D) and tripole (T) polarizing forces [Eqs. (12)]; (b) the average 

width of density fluctuations in the SOL, 
y, x 0

a
 

, and the average threshold blob size for 

stagnation, DT y, x 0
a

 
 [Eq. (13)]; (c) the cross-phase (CP) [Eq. (14)] for fluctuations from the 

simulation (black) and for the unstable mode of the linear dispersion relation (LDR) [Eq. (7a)]; 

and (d) the rms density (n) and radial velocity (vx) fluctuation, and the radial particle flux from 

Fig. 4(b).  All measurements are taken at x = 1.7 cm, except (b).  The wave numbers were taken 

to be kx = 0 and ky = 1.40 cm-1 in the LDR.in (c).  In (d) all quantities are rescaled to have maximum 

values of unity for comparison.  [Associated dataset available at 

https://doi.org/10.5281/zenodo.7254770] (Ref. 39). 
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The curvature dipole (D) and CX tripole (T) vorticity sources from the simulation are 

compared in Fig. 10(a).  We restrict the calculation to the fluctuating parts of the pressures and 

plot the root-mean-squares of the two sources with respect to y:   

 ( )
1/22

y
y

D P=    , (12a) 

 ( )
1/22

2
cx y i

y
T P=    . (12b) 

The CX drive overtakes the curvature drive at approximately t = 0.875 ms, where the D and T 

terms first cross, and dominates it after t = 0.925 ms.  Blobs for which the tripole drive is 

stronger than the dipole drive (T > D) are expected to be radially non-propagating, viz., to be 

“stagnant.”  The time required for T to overtake D in Fig. 10(a) is consistent with the time for the 

perpendicular flux (⊥) to be reduced to approximately zero in Fig. 4(b). 

A threshold width for blob stagnation (aDT) is found by associating the y-derivatives in 

Eqs. (12) with the reciprocal blob size, 
1

y a− → , and equating D and T: 

 CX
DT

i

cx e i
e i

R
a /[ (1 T / T )]

2 (1 T / T )


=   + →

 +
, (13) 

where the second form for aDT is given in dimensional variables. This threshold is essentially the 

one found in Sec. III(b) for the LDR frequency to be dominantly real [Eq. (8d) with ky → a-1, 

and Ti > Te ].  The result is a shift in the unstable spectrum satisfying I > R to lower ky.  Thus, 

with growing cx, smaller blobs experience stagnation before larger blobs, and the mean blob 

size in the SOL grows larger as a result.  In the far-SOL, larger-scale blobs dominate the blob 

population because the smaller-scale blobs, moving more slowly, are drained away in the parallel 

direction before they can get out that far.   

The mean bi-normal (y) blob size and aDT, both averaged over the SOL, are plotted 

versus time in Fig. 10(b).  The average blob size increases in parallel with aDT and is of similar 

magnitude, but saturates at 6 cm, on the order of the fundamental bi-normal mode, radially 

sheared by the mean flow. The tripole mechanism described here, giving large blobs a higher 

velocity and later stagnation than small blobs, is different from the blob-size-dependent effects 

induced by neutrals that are discussed in Ref. [26]; in particular, the tripole mechanism depends 

on finite Ti. 

The cross-phase (CP) is a measure of the correlation between the plasma density and 

electrostatic potential fluctuations that is often used to analyze turbulence, 

 ( )1/2 1/2
2 2

y y y
CP n n=    . (14) 
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The optimal cross-phase for radial blob propagation [e.g., n ~ sin(kyy) and  ~ cos(kyy), so 

x yv ~ n = −   ] corresponds to CP = 0. This blob-propelling phase shift between n and  is 

predicted by the LDR when the interchange drive is dominant: From the linearized density 

continuity equation and Eq. (8a), we find 
2
mhdy y y sn(k ) ik n (k )/( / ) =    , giving CP = 0.  On 

the contrary, if CP = ±, [e.g., n ~ sin(kyy) and  ~ sin(kyy), so x yv ~ cos(k y) ], the radial 

velocity, xv , is out of phase with n, resulting in no net radial motion of the blob.  This non-

propagating phase relation between n and  is predicted by the LDR in the large-cx limit 

where the frequency  is purely real.  See Eq. (8b). 

The cross-phase, Eq. (14), is plotted versus time at the reference location in Fig. 10(c).  

The figure suggests a transition from a turbulence more likely populated by radially propagating 

blobs to one in which blobs are less likely to be propagating.  But the relatively sudden decrease 

in the cross-phase occurs before tripole polarization (T) has grown to compete with dipole 

polarization (D) in Fig. 10(a), and it occurs as the perpendicular flux is increasing in Fig. 10(d).  

[The perpendicular flux is reproduced from Fig. 4(b), where it is given in physical units, but all 

three quantities are rescaled to have maximum values of unity for comparison.]  Furthermore, the 

amplitude of the radial velocity fluctuations, plotted in Fig. 10(d), remains approximately at its 

pre-neutrals value until T overtakes D, after which it decreases, causing the drop in the 

perpendicular flux that terminates the burst. 

It is straightforward to show that the CP for fluctuations (n, ) satisfying the LDR, Eq. 

(7a), is 

 2 2 1/2
LDR I R E

y

y

n k
CP [1 / ( ) ]

n k

−
−

= +   − 


, (15) 

which is plotted (red) in Fig. 10(c) for the unstable branch of the LDR.  Although Eq. (15) is for 

a single plane wave, and the LDR excludes much physics found in the full simulation, it is seen 

to be reasonably consistent with the result for the full simulation (black).  Furthermore, it returns 

zero if the growth rate dominates the real part of the frequency (in the plasma frame), e.g., the 

purely growing interchange mode, and ±1 if the frequency is purely real, consistent with the 

above description of Eq. (14).  

The initial fall of the cross-phase toward minus one, upon the onset of recycling, is 

caused by the rapid fall of the electron and ion temperatures due to IZ and CX cooling, 

respectively, seen in Fig.4(a).  As a result of this cooling, the interchange growth rate mhd, Fig. 

5(a), and the imaginary part of the LDR-predicted frequency, Fig. 6(b), fall even before the CX 

damping rate has grown appreciably.  The decrease in I reduces the dipole charge polarization 

drive of the blobs, tending to move the amplitude of the cross-phase closer to unity, consistent 

with Eq. (15), suggesting non-propagation.  Yet, the radial velocity fluctuation persists at its pre-

burst amplitude until the DT transition. 
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The persistence of the radial velocity fluctuation, and the burst in the particle flux, are not 

necessarily inconsistent with the fall of the CP, Eq. (14), seen in Fig. 10(c), with the onset of the 

burst.  The particle flux is by definition related to the cross-phase between the density and the 

radial velocity fluctuation, viz., 
1/2 1/22 2

x x xy y y
n v CP( n, v ) n v⊥ =        .  Both the 

velocity fluctuation and the cross-phase, in this expression, continue through the burst at roughly 

their pre-burst (strictly positive) values, and the burst in ⊥  is dominated by the burst in 

1/22

y
n  seen in Fig. 10(d). 

Snapshots of the electrostatic potential fluctuation () at three different times are shown 

in Fig. 11.  Before neutral turn-on (a), the turbulence consists of relatively small-scale, large-

amplitude blobs.  Soon after neutral turn-on, Te and Te decrease due to ionization cooling.  See 

Fig. 4(a).  And, while the plasma is connected to the sheath ( ~ B  3Te), the amplitude of the 

potential fluctuation decreases as well, as seen by comparing Figs. 11(a) and 11(b).  The factor 

of roughly ½ by which || is reduced differs from the factor of roughly 1/8 by which Te has 

fallen, partly because the plasma is becoming disconnected from the sheath.  (See Fig. 8.)  

Finally, in the wake of the burst, Fig. 11(c), the smaller blobs (larger ky), immobilized by 

stagnation, have been removed from the SOL by parallel transport which persists in the absence 

of perpendicular transport.  [See Fig. 4(b).]  The remaining potential fluctuation is dominated by 

the fundamental mode (ky = 2/Ly), radially modulated by a sheared, bi-normal E×B flow. 

  

Fig. 11.  Snapshots of the electrostatic potential fluctuation at (a) t = 0.6 ms, before the start of 

neutral recycling, (b) t = 0.8 ms, after the start of neutral recycling and with disconnection in-

progress, and (c) t = 1.0 ms, after small-scale blobs, rendered radially non-propagating by CX 
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friction, have been removed from the SOL by parallel transport. [Associated dataset available at 

https://doi.org/10.5281/zenodo.7254770] (Ref. 39). 

 

IV.  Parallel heat and particle fluxes 

a.  Particle flux 

The history of the electron parallel particle flux is shown in Fig. 4(a), in comparison with 

the perpendicular turbulent flux.  It is seen that the parallel flux, ||e , increases to a maximum 

value approximately 4.4 times its pre-neutrals value and then relaxes to about twice its pre-

neutrals value in the wake of the burst.  The electron and ion fluxes are approximately equal after 

neutral turn-on because B    , and, from Eqs. (A1) through (A7) in Ref. [7], we find 

|| ||i se nc =  = .  When the flux is at its maximum, the plasma density has increased by a factor 

of 8, while the sound speed has decreased roughly by a factor of 0.55.  So, the increase in the 

parallel flux is dominated by the increase in the plasma density from the ionization source, 

despite the decrease in the sound speed due to ionization and CX cooling. 

b.  Heat flux 

The electron and ion parallel heat fluxes are shown in Fig. 4(c), and expressions for them 

are given by Eqs. (A16) and (A17), respectively, in Ref. [7].  The power sent to the divertor is 

found by integrating the fluxes over the SOL (x > 0), 

 ( )div m ||e ||i

x  0
θP 2πR b Q Q

 

= + dx . (16a) 

The electron and ion contributions to Pdiv are plotted in Fig. 12(a). 

The heat flux widths are taken to be the Loarte lengths,[38] given by 

 Le,i ||e,i ||e,i

x > 0

Q / Q ( x 0)


=  = dx , (16b) 

and are plotted for the electron and ion heat fluxes in Fig. 12(b).  [In Eqs. (16), Q||e,i represents 

the bi-normal (y) average of the heat flux.] 
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Fig. 12.  (a) The power sent to the divertor, i.e., integral over the SOL of the parallel heat flux, in 

the electron (e) and ion (i) channels. (b) The electron and ion Loarte heat flux widths. [Associated 

dataset available at https://doi.org/10.5281/zenodo.7254770] (Ref. 39). 

The electron heat flux is the sum of conductive (q||e) and convective (~ ||e) components, 

viz.,   

 e||e ||e ||e

5
Q T

2
 + q . (17a) 

(The additional term involving Padéj in Eq. (A16) of reference [7] proves to be ignorable in the 

simulation and is omitted here.)  Since the ions are flowing into the sheath at the sound speed, 

which is on the order of the ion thermal velocity, the heat flux should be dominated by 

convection.  A diffusive parallel heat conduction description is not appropriate in this limit, and 

the ion flux is purely convective, 

 
|| ||i i i

5
Q T

2
=  . (17b) 

Following neutral turn-on, the conductive flux, q||e, decreases rapidly with the electron 

temperature. [Since B →  , q||e → ||CL

7/2
e~ Tq , c.f., Eqs. (A12) through (A15) of Ref. [7]] This 

rapid loss of approximately half of the pre-neutrals flux dominates the drop in Q||e at the 

reference location seen in Fig. 4(c).  With q||e ignored in Eq. (17a), the ratio of ion to electron 

powers is equal to that of the SOL-averaged convective fluxes, e||i ||e i ||i ||eQ / Q T / T   .  This 

ratio is 7/4 before neutral turn-on and rises steadily to 6 in the wake of the burst, consistent with 
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the ratio of ion to electron powers in Fig. 12(a).  We note that although the SOL-averaged ion 

and electron particle fluxes are equal, the heat flux ratio differs from the temperature ratio 

because i ||i i ||iT T   , etc.  We find that eiT / T  is 2.3 before neutral turn-on and rises 

steadily to 10 in the wake of the burst. 

The electron and ion heat flux widths (Le,i) increase with the onset of recycling, 

reaching maximum values equal to 1.2 and 1.3 times their pre-neutrals values, respectively, 

before relaxing to 1.15 and 1.02 of their pre-neutrals values in the wake of the burst.  In other 

words, the post-burst heat flux widths are not significantly increased by the introduction of 

neutrals, particularly in the case of the ions, in comparison with the pre-burst widths.  However, 

the blob influence on the profiles is apparent in the outward radial bulges seen in Fig. 3 at times 

before and during the burst.  Similar features are seen in the profiles of the parallel heat fluxes 

plotted in Fig. 13.  The post-burst equilibrium profiles lack these bulges and are approximately 

Gaussian shapes suggestive of a combination of radial diffusion and ionization of the given 

sources (Sn, SPe,i); the burst has removed the turbulent contribution to the widths that are 

dominated by the diffused sources at the end of the simulation.  This is a new equilibrium 

compared to that reached in the pre-burst, turbulent phase of the simulation.   

Comparing Figs. 4(c), 8 and 12(a) it is seen that the sharp drop in Q||e and in electron 

parallel heat flux at the divertor is well correlated with electrical disconnection from the sheath, 

whereas the effect of disconnection on the ion flux is not so pronounced. It is tempting to 

speculate on the relationship of sheath connectivity to divertor detachment; however, definitive 

answers on that would require more sophisticated modeling of the parallel dynamics than our 

present reduced model can provide. 
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Fig. 13.  Profiles of the parallel heat flux in the electron (a) and ion (b) channels at times before 

(black), during (red) and after (green) the burst.  The burst (red) and post-burst (green) electron 

heat flux profiles in (a) have been multiplied by a factor of 5 to make them comparable to the pre-

burst profile (black) in the plot.  [Associated dataset available at 

https://doi.org/10.5281/zenodo.7254770] (Ref. 39). 

 

V.  Summary and Discussion 

We presented results from a single nSOLT simulation in which an equilibrium turbulent 

plasma was exposed to a sudden influx of neutral atoms driven by plasma recycling at the 

divertor.  The physical parameters and geometry of the simulation were chosen to model 

conditions at the divertor entrance on the MAST-U tokamak.  The neutral population was 

evolved by a 1D kinetic equation and interacted with the fluid plasma through charge-exchange 

and ionization.  Upon the introduction of neutrals, a transient burst of cross-field turbulent 

particle flux (⊥) occurred, followed by the emergence of a quiescent non-turbulent (⊥→ 0) 

plasma equilibrium in an atmosphere of growing neutral density in which the interchange 

instability was so moderated by CX damping, and the growth rate (mhd) so reduced by 

ionization and CX cooling, that turbulence could not re-emerge.  We analyzed the burst to 

determine the nature of its origin and extinction. 
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With regard to the onset of the burst, it has been shown in other work,[2,3]  that the CX 

damping of the mean E×B flow (vEy) and its shearing rate ( x Eyv ) can diminish shear-

stabilization of the underlying instability and/or lower transport barriers that a shear layer may 

provide, potentially unleashing a burst similar to the one seen in the present simulation.   

However, there is no evidence that the sheared mean flow is mitigating the interchange-

driven turbulence in the pre-neutrals phase of the turbulence here.  A local linear dispersion 

relation (LDR), Eq. (7a), was derived from the model equations of evolution and its predicted 

frequency compared favorably with that of the dominant modes extracted from the power spectra 

of fluctuations from the simulation.  The pre-neutrals dominant mode was shown to be the 

sheath-moderated interchange mode, 
2

E Smhd
ω ω / ω= + i , and the saturation mechanism was 

found to be profile gradient modification. 

 For this simulation, there is also no evidence that the shearing rate falls prior to the onset 

of the burst.  Instead, it was found that the initial increase in the plasma density fluctuation (n) 

was at the ionization rate and, with little immediate change in the radial velocity fluctuation 

(vx), that increase dominated the initial rise in perpendicular transport (⊥ = nvx).  

Subsequently the ionization rate decreased with falling Te, due to ionization cooling, and the 

growth of n ceased. 

We derived an expression for the shearing rate, Eq. (10), from the model evolution 

equations.  Although it clearly demonstrates the ability of CX damping to reduce the shearing 

rate in principle, the damping is negligible in determining the equilibrium shearing rate, in 

comparison with sheath physics, for the parameters of the simulation.  Indeed, we found that the 

shearing rate is fairly approximated by the second derivative of the equilibrium sheath potential, 

Eq. (11), at all times.  See Fig. 7.  

The fact that sheath or collisional physics dominates over charge exchange friction in the 

evolution of the equilibrium sheath potential is a consequence of the short connection length in 

the region of the divertor plasma considered here.  In regions of the plasma where the connection 

length is longer, and hence sh in Eq. (10) is smaller, or on closed flux surfaces where sh = 0, 

charge exchange flow damping is more likely to dominate the evolution of the turbulence, as 

noted in previous investigations. With decreasing Te and increasing ne the plasma grew more 

collisional.  While the parallel current was sheath-limited before neutral recycling began, it was 

disconnected and conduction-limited soon thereafter.  We used the ratio of sheath-to-collisional 

conductivities as a measure of disconnection and demonstrated the disconnection of blob 

filaments during the burst.  See Figs. (8) and (9).   

While blobs are usually observed to speed up upon disconnection,[9] their radial motion 

may be halted if, in the presence of a growing neutral population, the charge exchange force 

overtakes the curvature force in the vorticity equation.  This change corresponds to a transition in 

the LDR from a purely growing mode,  ~ imhd, driven by the interchange force, to one with 

strictly real frequency found in the limit of growing charge-exchange damping, 
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CX

2
*i mhd *i

ω ω i /ν ω= +  → .  According to the blob correspondence principle, yIb
v ~ / k , that 

transition results in blob stagnation,
b

v 0→ , where the condition for stagnation is 

CX

2
*i mhd

ω ν   , or  for Ti > Te, 
CXyk ν   , in dimensionless units.  See Sec. III(b) and III(e). 

We compared the interchange force (denoted “D” for the dipole charge ~ yP  that it 

induces in a blob) and the CX friction force (denoted “T” ~ 
2
yP  because it induces a non-

propagating tripole charge distribution in a blob) acting on fluctuations.  See Fig. 10(a).  

Turbulent transport ceases when T overtakes D, terminating the burst.  A threshold width for 

blob stagnation (aDT) was found by equating the D and T forces; blobs of (bi-normal) width ‘a’ 

are stagnant if a < aDT and are drained away by parallel transport.  The threshold  aDT is 

consistent with the threshold found from analysis of the LDR (with yk 1/ a→ ) given above.  It 

was shown that the measured average blob width in the SOL increases during the burst, and 

thereafter, at the same rate as aDT.  See Fig. 10(b). 

The cross-phase, 
1/2 1/2

2 2

y y y
n / n    drops to −, suggesting stagnation, well 

before the DT transition, due to the initial fall of Te and Ti caused by IZ and CX cooling, 

respectively, upon the onset of recycling.  However, the r.m.s. radial velocity fluctuation, 
2

y( )  , and the perpendicular flux, yn−    , decrease abruptly only at the DT transition.  

See Fig. 10(d). 

The introduction of neutrals significantly reduced the electron parallel heat flux to the 

divertor.   This reduction was dominated by ionization cooling, particularly as the conductive 

heat flux q||e transitioned from sheath-limited (~Te) to collision-limited (~Te
7/2) when the 

parallel current was disconnected from the sheath.  Consequently, the power to the divertor in the 

electron channel was reduced by a factor of 1/6.  The effect of charge-exchange cooling on the 

ion channel was relatively insignificant.  Similarly, the electron heat flux width increased by 

15% with the introduction of neutrals while the ion width increased by 2%.  See Fig. 12. 

In conclusion, the present simulations have captured the synergies on turbulence of a 

number of individually well-known effects that will be present in a divertor plasma including 

recycling, ionization and associated cooling, charge exchange and associated friction, sheared 

flows and sheath connection (or not). The analysis has revealed an ionization-driven transport 

burst, electrical sheath disconnection, driven by ionization cooling and increased collisionality, 

blob stagnation from a combination of neutral friction and ion diamagnetism, and the mitigation 

of the parallel electron heat flux with little change in the SOL heat flux width. As experiments 

with the MAST-U divertor science station were not available at the time of this research, no 

attempt was made to simulate particular experiments; the present model simulation results are 

predictions that await experimental validation.  It is hoped that these reduced model simulations 

in simplified geometry will stimulate the search for such effects in experiments and other 

turbulence codes. 
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Appendix A    Linear dispersion relation 

We derive the local linear dispersion relation (LDR), Eq. (7a) of section IIIb, as follows. 

A reduced vorticity evolution equation is obtained by ignoring the ion FLR and 

centrifugal terms on the second line of Eq. (3b), as well as the y-component of the friction force 

fy.  The curvature force (~) is in the negative radial (x) direction and competes with the radial 

component of the friction force, and we would like to emphasize that competition.  So, we start 

from the reduced, linearized vorticity evolution equation: 

 ( )E e i x dix || ||
m

t y y y cx
2

ρ v ρ ( P P ) n v v
R

j +  =  + − + −       . (A1) 

With the Fourier conventions t i → −   and i → k , we have ( )2

i
k n P = + , 

Ey x ye,i e,i e,i
( i ik v ) P v P ik P − +  = − =  (from pressure continuity), and ydix i

v ik P / n = −  .  

Here the zero-order fields (n, , Pe,i, Te,i) are represented by their poloidal (y) averages, and the 

prime denotes the radial (x) derivative.  Furthermore, we express invariance along the magnetic 

field lines by assigning to the operator ||
 in (A1) the value ||

( )1/ L+ , where L|| is the parallel 

connection length to the divertor target plate.  The plus sign (+) is consistent with our convention 

that the charge density (vorticity) decreases with time where ||
j  is positive.  With these 

substitutions, (A1) becomes 

 

2
y y y2 2

i e i y i || ||
m

cx

k k k2
iωk n P i (P P ) k n P /L

ω ω R ω
j

   
   − − = − + − − −   

   
     , (A2) 

where Eyk v = − is the frequency in the E×B drift frame, and  is the frequency in the lab 

(simulation) frame. 

The total parallel resistivity is the sum of the collisional (C) resistivity in the volume and 

the sheath (S) resistivity, or, in terms of conductivities (), 

 S C1/ 1/ 1/ =  +  . (A3)  

With total and partial current density fluctuations given by  

https://doi.org/10.5281/zenodo.7254771
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 || ||
j = − , (A4) 

 SS|| ||
j = −   ,  (A5.1) 

 CC|| ||
j = −   , (A5.2) 

it follows from (A3) that 

 ( )S C

1

||
j 1/ j 1/ j

−
 =  +  , (A6) 

which is the Padé expression used in the nSOLT model, written here for fluctuations.[7]  (We 

ignore a flux-limiting partial current, proportional to the electron thermal speed, that appears as a 

third term in (A3) and (A6), because it is too large to be an effective limit in the simulation.  See 

Eq. (A4) of reference [7].) 

The parallel sheath conductivity (S) is found by linearizing the expression for the 

sheath-limited current, 

 ( )eB
e s||S

e( )/T
j n c e 1 e

 −
= − , (A7) 

in fluctuations about the Bohm potential,  =  - B, and the equilibrium temperature.  In 

equilibrium,  = B = 3Te, and we have 

 e
e

2
e s

S||S ||
e

n c e
j T

T T

 
 =  −  = −   

 
.   (A8) 

Using the continuity equation for Te, and retaining only the convective time derivative, we 

obtain 

 
y e

e

ck T
T

B


 = − 


.   (A8.1) 

Then letting  e = e, expressing Te in terms of  = (c/B)ky and substituting into Eq. 

(A8) we obtain 

 
2

e s
S||S ||

e

e n c
j

T


 =  = −  


.   (A8.2) 

Here, we enforce the assumption of invariance along the field lines by replacing 
||

 in (A8.2) 

with ||
1/ L− .  With this substitution it follows from (A8.2) that  
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2
e s ||

S
e

n c e L

T


 =


. (A9) 

With the parallel collisional conductivity given by [40] 

 

2
e

C
e ei

n e

0.51m
 =


, (A10) 

we have 

 1/2S
ei

C

0.51(1 T / T )
 

= + 
 

,  (A11) 

where  is the Coulomb collisionality parameter, 

 
ei ||

e sr

L
 

 
. (A12) 

Here ei is the electron-ion collision frequency, and e is the electron cyclotron frequency.   

Using (A5.1), (A5.2), and (A11), (A6) may be written as 

 S
|| ||
j ( )

ˆ(1 )


 = − 

+ 
, (A13) 

where 

 1/2

C

S
ei

ˆ 0.51(1 T / T )
 

  = + 
 

. (A14) 

Using (A13), with  
||

 → ||
1/ L− , in (A2), and multiplying the result by 2i / nk ,  yields 

the dispersion relation in the lab frame: 

 ( )( ) 2
E E *i mhd E Scxˆω ω +i ω ω ω i(ω ω )ω− − − = − − −   (A15) 

where 

 E y Eω = k v , (A17) 

 

2
y

2cx cx

k
ˆ

k
=  , (A18) 

 i
*i y

P
ω = k

n


, (A19) 
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2
y2

mhd e i2
m

k 2
(P P ) / n

Rk
 = − + , (A20) 

and 

 ( ) ( )
1 1

S
S 2 2 2

||
2

ˆcs ˆ ˆω = 1 1
L k k nL

||

− −
+  → + 

s




, (A21) 

where the first form in Eq. (A21) expresses S in terms of dimensional quantities (note 

2 2

s sr e erT / T =  ).  In the expression for S (A9), all quantities are in physical units.  The 

dimensionless version, S̂  in (A21), is given by the same expression (A9) but without the factor 

e2 and with all quantities given in dimensionless units,  

 S
||nc Ls

ˆ =
Te





, (A22) 

where, again, all zero-order fields (n, , Pe,i, Te,i) are represented by their poloidal (y) averages. 
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