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Abstract 

 

The 2D scrape-off-layer turbulence code (SOLT) is extended to include neutral-plasma 

interactions.  A Boltzmann equation is derived for the evolution of the bi-normally-averaged 

neutral distribution function, G(x,vx,t), in the radial dimension, and this evolution is included in 

the new code (nSOLT).  Neutral-plasma interactions are mediated by charge-exchange (CX) and 

ionization rates based on poloidally-averaged plasma density and temperature.  Good agreement 

is obtained between asymptotically stationary neutral density profiles from nSOLT simulations 

and those previously obtained from the Monte Carlo neutral transport code DEGAS 2, for time-

averaged NSTX H-mode plasma profiles.  The sensitivity of the nSOLT neutral profiles to 

atomic physics parameters, with and without CX physics, is included in the comparison.  In 

addition, nSOLT simulations that evolve the plasma in 1D, using radial diffusion as a proxy for 

turbulent (blob) transport, illustrate the convergence to a self-consistent neutral-plasma 

equilibrium sustained by a neutral source at the far-SOL boundary and plasma heating in the 

core; equilibria consistent with typical NSTX Ohmic L-mode plasmas are described.  
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I.  Introduction 

The importance of accounting for neutral interactions in modeling plasma turbulence and 

transport in the tokamak edge and scrape-off-layer (SOL) is irrefutable.  The tokamak plasma is 

maintained against losses by an influx of neutral atoms in the form of beams, gas puffs, and/or 

recycled plasma ions from material surfaces.  Neutral ionization by electron collisions is 

concentrated in the edge and near-SOL where the electron temperature exceeds the ionization 

energy, and ionization here cools the plasma, while charge-exchange collisions produce a 

population of heated neutrals that can escape through the relatively cool SOL and impact the 

wall, causing impurity sputtering, enhanced recycling and damage to plasma-facing components. 

Momentum exchange with neutrals results in forces that can drag the plasma flows.  The 

ionization particle source and energy sink can also modify plasma and hence flow profiles.  Both 

effects can impact the formation of transport barriers and the moderation of instabilities by 

sheared flows.  Historically, these effects have been included in large-scale plasma transport 

codes by coupling them to kinetic Monte Carlo neutral transport codes. But reduced modeling of 

self-consistent interactions between neutrals and turbulent plasma fluctuations is in its early 

stages of development at this writing. 

A brief roundup of currently active modeling capabilities affords perspective on the 

reduced model presented here.  The most realistic models of plasma transport in the edge and 

SOL are provided by gyro-kinetic particle-in-cell (PIC) codes.  For example, XGC1 [1]  evolves 

turbulent plasma fluctuations in three spatial dimensions (3D) in diverted magnetic field 

geometry and includes self-consistent neutral-plasma interactions via a built-in Monte Carlo 

(MC) neutral transport routine. [2]    In order to reach statistically steady states that emerge on 

the longest “transport” time scales the extreme realism afforded by this coupled system comes at 

a relatively high cost, making it desirable to conduct studies of neutral-plasma equilibria, for a 

range of input parameters and on realistic wall-clock time scales, using reduced-model 

simulations. 

Fluid models of plasma turbulence offer a significant reduction in computational cost 

compared to PIC models.  For describing edge and SOL turbulence, these models are dominated 

by the drift-reduced Braginskii equations.[3]   Simulation models that solve these (or closely 

related) fluid equations include: the BOUT++ package [4]; the GBS  (“Global Braginskii 

Solver”) code [5]; the GDB (“Global Drift-Ballooning”) code [6], the HERMES code [7] (built 

on the BOUT++ package), the HESEL (“Hot Edge-Sol-Electrostatic”) code [8], the SOLT 

(“Scrape-Off-Layer Turbulence”) code [9] and the TOKAM3X code.[10]  The Braginskii model 

[3] describes the evolution of fluctuations on spatial scales perpendicular to the magnetic field 

limited by the ion gyro-radius and time scales greater than the ion gyro-period, and while the 

equations solved in these codes differ in important details (electromagnetic capability, 

dimensionality, magnetic field realism and the Boussinesq approximation [11]), all resolve 

“blob” fluctuations born of the interchange instability in the edge  region and the associated 

turbulent transport.  (See references [12, 13] for a review of transport by blob-filaments.) 
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Although the more physically realistic and expensive of these models may be reduced 

further to run faster (e.g., BOUT++ and GBS can be run in 2D mode), that is counter to their 

purpose: to provide a global picture of fully 3D turbulent fluctuations for realistic tokamak 

magnetic field geometry.  The reduced models serve both to resolve details of  the turbulence in 

spatially localized critical sub-domains of the big picture, e.g., the outboard midplane (OM) sub-

domain of the edge and SOL, and to achieve self-consistent equilibria between the radial plasma 

profiles (mean fields) and the fluctuations, and to do so economically.  In this sense, HESEL and 

SOLT are the most reduced of the fluid turbulence models listed above simply because their 

simulation domain is a plane perpendicular to the B-field in the OM region and because of other 

physics simplifications that distinguish them in detail. 

If instead a 3D fluid model is reduced to 2D by replacing the fluctuations with their 

toroidal averages (i.e., assuming toroidal axisymmetry), equilibria are more economically 

attained.  If, in addition, the particle and energy transport perpendicular to the magnetic flux 

surfaces is modeled by “anomalous” diffusion coefficients (intended to account for turbulent 

diffusion and convection), then the result is a “transport” model.  Transport models can describe 

equilibrium plasma profiles on the global scale for realistic tokamak B-field geometry.  The 

effect that neutrals have on the equilibria is typically studied by coupling the plasma-transport 

code to either a fluid neutral model, such as UEDGE,[14] or to a kinetic Monte Carlo neutral-

transport code, for example in the EDGE2D-EIRENE [15] and UEDGE-DEGAS 2 [16] 

couplings and in the B2.5-EIRENE [17] coupling in the SOLPS-ITER [18] system.  These 

neutral-plasma transport systems are relatively expensive to run, and the MC codes are a source 

of some noise.  (Both B2.5 and UEDGE include fluid-neutral modules that can serve as simpler, 

faster and quieter alternatives to the MC routines.)  Furthermore, the anomalous diffusion 

coefficients must be chosen ab initio and are not determined self-consistently in the course of the 

simulation, making them arguably ad hoc, or at best empirical; for studying self-consistent 

neutral-turbulent-plasma interactions, these codes are inappropriate.  

The high cost of iterating a turbulent plasma transport code coupled to a MC neutral-

transport code, long enough to reach equilibrium, compels the development of reduced neutral-

plasma interaction models.  Indeed, to our knowledge, none of the Braginskii fluid models have 

been coupled to a MC neutral transport model, although this was reported as a work-in-progress 

in the case of the TOKAM3X code (coupled to EIRENE) in reference [10].  Instead, the fluid 

models may be extended to include either a kinetic Boltzmann description or a fluid description 

of neutral transport, with the plasma interaction provided by formulaic collision rates.  The fluid-

neutral description is appropriate in the short neutral mean-free-path (MFP) regime, and the 

kinetic-neutral description in the long MFP regime.  MC PIC models include both regimes. 

The development of reduced neutral-turbulent-plasma interaction models, either fluid- or 

kinetic-neutral, to study edge and SOL turbulence represents a rapidly changing field populated 

by only a few examples at this writing.  The fluid-neutral models include those of Bisai and Kaw 

[19] (BK) and a recent extension of the HESSEL model. [20]  The GBS  model[5] is the only 
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reduced fluid-plasma coupling to kinetic (Boltzmann) neutrals, besides the one proposed here, of 

which we are aware.   

The 2D BK fluid model describes the evolution of the electron, ion (H
+
 and H2

+
) and 

neutral densities, the electron temperature and the electrostatic potential using fluid moment 

equations.  Neutral transport is diffusive, and the diffusion coefficient depends on ionization, 

charge-exchange and molecular dissociation collision rates.  The model has been applied to study 

neutral effects on plasma density, temperature and electrostatic potential profiles in the SOL. 

(Ions and neutrals were taken to be cold in [19], while a population of hot neutrals was modeled 

in [21].)  The nHESSEL model is similar to the BK model in that it couples reduced fluid-plasma 

evolution equations for density, potential, and electron and ion pressures to the diffusive 

evolution of several species of energetically distinguished fluid-neutrals.  It has been applied 

recently to study blob-neutral interactions in the presence of molecular dissociation. [22]  (SOLT 

can be extended similarly to include a 2D neutral fluid model, but that is not described in this 

paper.) 

The GBS code has been extended recently to include self-consistent kinetic neutral-

plasma interactions. [5]  The neutrals evolve according to a 3D kinetic equation for the 

distribution function coupled to the plasma through the use of Krook operators based on collision 

rates for ionization, charge-exchange and recombination, and the plasma evolves according to 

the drift-reduced Braginskii equations expanded by the corresponding neutral collision terms.   

This model can describe both long and short neutral MFP regimes.  Simplifying assumptions 

related to the anisotropy of blob filaments and to the separation of characteristic times for 

turbulent fluctuations and for neutral flights are exploited to reduce the 3D model to a set of 

coupled problems on 2D poloidal sections.  The nSOLT model described here is a further 

reduction that focuses on 2D plasma evolution in the outboard midplane region coupled to long-

MFP neutral evolution described by a 1D Boltzmann equation. 

The primary shortcoming of the fluid-neutral model is that it does not describe the long 

MFP neutrals produced by charge-exchange in the edge region.  These effectively heated 

neutrals penetrate into the edge pedestal where they are further heated and then can cross the 

SOL to impact the wall where they contribute to recycling and erosion.  Although this population 

may be a relatively tenuous tail on the neutral distribution function, the corresponding energy 

flux to the wall (a third-order velocity moment) may contribute to the heat load limits on the first 

wall [23] and cause long-term damage and erosion of material surfaces.  The neutral particle flux 

contributes as well to recycling.  The fluxes can only be measured with confidence in a kinetic-

neutrals simulation like the extended GBS model and the nSOLT model introduced here.   

The nSOLT model is a 2D fluid-plasma, 1D kinetic-neutral (Boltzmann) model 

applicable in cases where the neutrals have ionization MFPs that are long compared to plasma 

turbulence (blob) structure sizes.  This is arguably the case for atomic neutrals born from 

molecular dissociation (~3 eV Franck-Condon atoms) near material boundaries in the far-SOL 

[24]  and, all the more so, for neutrals effectively heated by charge exchange with hot ions (~ 

100 eV) in the edge region.  In the 1D model, turbulence structures interact with neutrals through 
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poloidal (y) averages, i.e., the neutrals “average over” the turbulence by virtue of their relatively 

long MFPs.  For example, the neutral shadow [25] cast by a plasma blob may show up as a 

negative fluctuation in the radial neutral density profile, provided the blob shows up in the SOL 

plasma profile.  This admittedly limited description may suffice for modeling the self-consistent 

evolution of neutral and plasma profiles.  Where this is the case, nSOLT will find equilibria that 

may prove predictive of conditions in the tokamak SOL, and do so quite economically. 

The remaining sections of this paper are organized as follows.  Section II introduces the 

nSOLT model equations, with details given in an appendix.  Section III presents results from a 

verification exercise: taking fixed plasma profiles from NSTX H-mode discharges, stationary 

atomic (D) density profiles obtained from nSOLT and from DEGAS 2 MC [26] simulations are 

compared.  In Sec. IV, results from 1D nSOLT simulations of time-dependent, self-consistent 

neutral-plasma evolution are described. In these simulations linear radial diffusion serves as a 

proxy for turbulent transport.  Self-consistent equilibria are obtained for neutral fueling at the 

far-SOL boundary and plasma heating in the core region.  A summary and concluding remarks 

are given in Sec. V. 

 

II. The nSOLT model 

1.  Neutral-plasma evolution equations 

The evolution of the neutral species is described by the following equations 

 cx 0 cx i iz et x xG v G h n F h n G h n G       (1a) 

  0y 0x x 0y cx i Ey diy 0ytv v v h n v v v       (1b) 

 

where G = G(t,x,vx) is the 1D neutral species distribution function, and F = F(t,x,vx) is a 1D 

Maxwellian distribution function based on the poloidally averaged ion density and temperature, 

 

 2 1/2
x i iiF n exp v / (2T ) / (2πT )  

 
.  

 

Here x is the radial dimension and the over-bar denotes a poloidal (y) average,  ni and ne are the 

ion and electron number densities, and vEy and vdiy are the y-components of the EB and ion 

diamagnetic drift velocities, respectively.  All plasma quantities (ni, ne, vEy, vdiy) are represented 

by their poloidal averages in Eqs. (1), corresponding to the long-MFP neutral limit where the 

neutrals average over the turbulence.   The neutral density and radial neutral fluid velocity, n0 

and v0x, are obtained from the moments of G,  

 0 x x 0 x x x 0xn dv G(x,v , t) , v dv v G(x,v , t) / n   , 
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and v0y is the poloidal neutral fluid velocity.  Details of the reduction of the 3D Boltzmann 

equation to 1D, Eq. (1a), and the derivation of Eq. (1b) are given in the appendix. 

The charge exchange (CX) and ionization (IZ)  rates per particle (hcx and hiz) appear as 

multipliers in Eqs. (1) because the collision rates,  ,  v v v v have been approximated by 

their averages over assumed Maxwellian distributions of ion and electron velocities in the 

Boltzmann collision integral:  hcx(Ti) = cx|vi| and hiz(Te) = iz|ve|.  Note that we ignore 

radiative recombination altogether in the model because the rate per particle for that process 

(hrec)  is much less than either hcx or hiz for the plasma temperatures considered here, viz. 

midplane modeling of the edge and main SOL.  Recombination would be important if the model 

were adapted for application to the divertor region in detached conditions.  See the  appendix 

(A4) for details. 

The plasma evolution is described by the SOLT model equations, [9] expanded to include 

neutral interactions by the addition of the terms, derived in the appendix A(1-2), proportional to 

hcx and hiz in Eqs. 2(a-c) and the term involving f in Eq. 2(d) below: 

 

e e iz 0 e / / //t n nn (D n ) S h n nd       , (2a) 

e e e e e e e e n e

e2
iz 0 iz e / / e// / / //3

e e

t Pe n PeT (D n T ) / n T (D n ) / n (S T S ) / n

T2
        h n ( E T ) q  , 

3n n

d        

      
 (2b) 

i i i i i i i i n i

2 i
iz cx 0 0 i / / i// / / //3

i i

t nPi PiT (D n T ) / n T (D n ) / n (S T S ) / n

T2
       (h h )n ( E T ) q  ,

3n n

d         

       
 (2c) 

 2
ρ e i / / //

2 2 2 2
e di E i E i e E

t x y y xρ (D ρ) 2b κ (P P )

1 1 1
     n v v ( P ) (v P ) b n v  ,

2 2 2

jd f f



          

            
   

 (2d) 

 

with the generalized vorticity 

 

  in P      . (2e) 

 

Here Et td    v is the total time derivative including convection by the EB velocity, vE = 

b in a constant, uniform magnetic field B = bB directed out of the (x,y) plane that is the 

domain of the model.  The ion diamagnetic drift velocity is given by vdi = b Pi/ ni .  The 

electron and ion pressures are given by Pe = neTe  and Pi = niTi, respectively.  Although we have 

distinguished between electron and ion densities in Eqs. (1) and (2), the model assumes quasi-

neutrality (ne = Zni), and we treat only deuterium plasmas here (Z = 1).  The equations are given 

in dimensionless form in Bohm units of time (ci
-1

), length (s = csci) and electrostatic 

potential (Tref/e), where the ion cyclotron frequency is ci = ZeB/mic, and the ion acoustic speed 
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is cs = (ZTe/mi)
1/2

.  Temperature and density are normalized by reference values: (nref , Tref) = 

(10
13

cm
-3

, 100 eV) in this paper. 

The parallel current density (j//), particle flux () and heat fluxes (qe// and qi//) are based 

on models of 1) electrostatic drift wave physics in the closed-field -line or “core” region and of 

2) divertor sheath physics (via “closure” relations) in the open field line region, i.e., in the SOL.  

These are dynamical quantities that evolve with the turbulent plasma fields.  We refer the reader 

to our published work, [27] for a complete description of these terms. Sn, SPe and SPi are 

specified sources of plasma density, electron pressure and ion pressure, respectively. 

The factor 2/3, multiplying the ionization cost (Eiz) and the neutral energy (E0) in Eqs. 

(2a) and (2b), results from the assumption that the neutrals are isotropically distributed in 

velocity space; see the appendix (A2). 

The vector 

 

 cx 0 i 0 E di iz 0 e 0h n n ( ) h n n   v v v vf  (2f) 

 

in the vorticity equation (2d) describes the neutral drag of the plasma flows by CX and IZ 

“friction” forces.  The expression given for the effect of this force density on the vorticity 

evolution, viz., x y y xf f    b f , is of the same form as that more familiar expression for 

the effect of the polarization force, due to B-field curvature and grad-B drifts, given by  

e i2 (P P )  b κ  in Eq. (2d).  (The dimensionless curvature vector  κ b b .)  The neutral 

force is simply added to a general expression for the effect of polarizing forces on the evolution 

of vorticity. [12]  The neutral density n0 and velocity v0 are functions only of radius (x) and time 

(t), while the plasma fields (ni, ne, vE and vdi) are functions of x, bi-directional (approximately 

poloidal) dimension (y) and time.  

 

2.  Boundary conditions 

 

All plasma fields (n, Te, Ti, ) are periodic in y.  The fluctuations in these fields (e.g., 

n n n   , where the over-bar indicates the poloidal average or “mean” value) vanish at both x-

boundaries of the domain 0  x  Lx.  The mean values of the density and temperatures are held 

to constant “floor” values at the far-SOL boundary, and their radial gradients are held to zero at 

the core-side boundary so that there is no diffusive flux of those quantities at that boundary.   

Either the potential ( ) or the radial electric field ( Eyx v   ) may be specified at the x-

boundaries, and these boundary conditions are used to solve Eq. (2e) for the potential. 

At the far-SOL boundary (x = Lx), or “wall,” the boundary condition on G is given by 

Eqs. (3) and (4) below and describes neutral injection by a stationary source, or neutral gas 

“puff,” and time-dependent recycling of the ions.  In Sec. III, the in-coming neutrals are taken to 

be Franck-Condon (FC) deuterium atoms (D) born from dissociation of the molecular species 
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(D2).  We assume a Maxwellian distribution of velocities at a characteristic temperature (TFC) 

centered on the average velocity 
2

D(v )  of the molecules entering from the wall:  

 

 
2

2 1/2
D FC FCxG(x=L , v 0) Nexp[ (v v ) / 2T ] / (2πT )    . (3) 

 

The density N is the sum of the puff (N0) and recycled neutrals and ions impacting the wall, 

 

 
( )

0 0 FCy
N N ( + )/v  N i iR F R F


  , (4) 

where R0 and Ri are recycling coefficients, 

0
( )

FCFCv dv v (v)f




   , and the out-going  radial 

particle fluxes are given by 

 SOL

0

dv vG(v,x )NF



   (5) 

and 

    
1/2

2 1/2i
i Ex i Ex Ex i

T 1
 n exp v / 2T v v / (2T )

2 2
iF erfc



  
     
   

, (6) 

 

where we have assumed a Maxwellian ion velocity distribution function centered at the radial 

EB velocity ( Exv ) in Eq. (6), and erfc denotes the complemented error function.  As Exv / Ti 

  in Eq. (6), the ion flux, Fi, approaches i Exn v , the “blob limit.” In the opposite extreme, 

i.e., Exv / Ti  0, Fi  approaches the thermal limit,  
1/2

i in T / 2 .  The plasma fields in Eq. (6) 

are evaluated at the wall, and only the poloidal average of the ion flux contributes to recycling, 

as indicated in Eq. (4).  In equation (3), we take 
2

Dv 0.8 km / sec  , corresponding to room 

temperature (300 K) D2 molecules that detach from the wall, and we take TFC = 3 eV, unless 

noted otherwise. 

Neutrals free-stream out of the simulation domain at both boundaries; exiting neutrals at 

the core-side boundary, G(x=0,v<0),  and at the first wall boundary, G(x=Lx,v>0), are evolved 

by convection alone.  No neutrals enter from the core: G(x=0,v>0) = 0.  G is held to zero at the 

boundary of the velocity domain which extends to () 4cs (280 km/sec) and adequately contains 

the observed support of G in the simulations.  The boundary values of the poloidal neutral fluid 

velocity v0y respond to the CX friction force according to Eq. (1b).   

 

3.  Numerical method for neutral evolution 

 



9 
 

Compared to some of the algorithms already in SOLT to evolve the plasma, those added 

to advance G are relatively trivial in structure and computational expense.  Evolution is in three 

steps: free-streaming by upwind linear interpolation, CX update by a 2
nd

 order Runge-Kutta 

method and an explicit exponential update for ionization.  (Plasma fields are taken as fixed over 

a single time step, t.)  The free-streaming update is constrained by max(|vx|) t/x < 1, where 

here vx is the independent velocity variable of the neutral grid (x,vx).  With max(|vx|) ~ cs and x 

~ s , this constraint amounts to t < i
-1

 which imposes no greater computational burden than 

that imposed by resolving the turbulent fluctuations, where t ~ 10
-2

 i
-1

 is typical in practice.   

 

III. nSOLT and DEGAS 2 comparisons 

As a first verification exercise for nSOLT, we compare neutral deuterium (D) radial 

density profiles obtained from nSOLT simulations with those obtained from DEGAS 2 

simulations using time-averaged plasma profiles measured on NSTX during H-mode discharges. 

[28]  The plasma fields (ne, ni, Te, Ti) do not evolve, while the neutrals evolve into stationary 

profiles. There is no y-dependence and, therefore, no turbulence (blobs) in the nSOLT 

simulations described here.  The DEGAS 2 simulations are fully 3D but do not model plasma 

turbulence either.  This is simply a test of the 1D neutral model in nSOLT and the stationary 

neutral density profiles that it predicts in equilibrium with given stationary plasma profiles.  The 

electrostatic potential and plasma flows were not measured, so we do not evolve the neutral 

poloidal velocity in this exercise.  We suppress the over-bars, denoting y-averages, in this and 

the following section,  and since the neutral atomic species is deuterium (D), we make the 

replacements n0  nD and E0  ED. 

The plasma profiles input to the DEGAS 2 simulations were measured by Thomson 

scattering (TS) and charge-exchange recombination spectroscopy (CHERS) on H-mode 

discharges at NSTX during the 2010 campaign.  We make comparisons with two of the shots, 

142214 and 139412, used in the DEGAS 2 simulations described in reference [28].  The plasma 

profiles for the shots are available from the archived data. [29]  The ne and Te profiles for the 

nSOLT simulations are interpolations of the TS data, taken in the outboard midplane, and are 

shown in Fig. (1). 
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Fig. 1.  Electron density (a) and temperature (b) profiles from Thomson scattering data (dots) 

interpolated (dashed and solid curves) onto the nSOLT radial grid and taken as input to the 

simulations. x is the displacement from the separatrix measured at the outboard midplane.  The 

shot numbers appear as insets labeling the curves. [Associated dataset available at 

https://doi.org/10.5281/zenodo.1342773] 

For these comparisons we take the electron density in nSOLT to be enhanced over the 

deuterium ion species (ni) by the presence of a minority population of carbon ions (C
+6

), 

consistent with the DEGAS 2 simulations.  Thus in Eq. (1a) we take ein nr , where r = 0.8 and 

0.86 for shots 142214 and 139412 respectively.  Because the CHERS diagnostic showed no 

significant difference between the electron and ion temperatures, they were taken to be equal in 

the DEGAS 2 and nSOLT simulations: Ti = Te.   

The CX and IZ rates used in the nSOLT simulations are [2] 

14 0.3 1/2 3
cx i i ih (T ) 1.1 10 T (x,t) M   m /sec    and  (7) 

 15 1/2 3
iz e e e eh (T ) 8 10 T (x,t) exp 13.56 / T (x,t) / (1 0.01T (x,t))  m / sec    , (8) 

respectively, with Te and Ti expressed in eV and Mi in AMU (Mi = 2 for D).  These formulaic 

rates, equations (7) and (8), are fits to tabulated values of the collision rates that are used in the 

DEGAS 2 simulations.  (See [28] and references therein.)  The tabulated ionization rate is 

obtained from a collisional radiative model and is a function of the local electron temperature 

and density, while the tabulated CX rate is a function of the local ion temperature and neutral D 

energy ED.  Comparing the tabulated and formulaic rates we found that the ionization rate fit is 

within 20% of the tabulated value if 10
17

 m
-3

 < ne < 10
19

 m
-3

 and 5 eV < Te < 5 keV, and the CX 

rate fit is within 20% of the tabulated value if 1 eV < ED < 20 eV and Ti > 10 eV.  Of these 

bounds, the upper bound on the neutral energy (20 eV) is particularly exceeded for CX-heated D 

in the nSOLT simulations. (The D energy flux to the wall is maximized at ED  500 eV in the 

https://doi.org/10.5281/zenodo.1342773
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DEGAS 2 comparison runs.) So our neglect of ED in Eq. (7) may not be justified and remains to 

be explored.  Nevertheless, we shall see that good agreement with DEGAS 2 results is obtained. 

The boundary condition for G at the wall corresponds to sustained neutral fueling with no 

recycling; N0 > 0, R0 = 0 and Ri = 0 in Eq. (4).  The absence of wall recycling is artificial; for 

this verification exercise we chose N0 so that the atomic deuterium  density matched that 

observed in the DEGAS 2 simulations at a point in the SOL corresponding to the boundary of the 

nSOLT simulations, and we evolved Eq. (1a) until a stationary state was reached.  The resulting 

neutral density profiles are compared in Fig. (2).     

 

 

Fig. 2.  Neutral atomic deuterium (D) density profiles from DEGAS 2 (dashed) and nSOLT 

(solid) simulations on linear (a and c) and logarithmic (b and d) scales.  nSOLT simulations used 

puff densities , c.f.  Eqs. (3) and (4), N = N0 = 5 x 10
16 

m
-3

 and 6.5 x 10
16 

m
-3

 for shots 142214 (a 

and b) and 139412 (c and d), respectively, to match the DEGAS 2 value of nD at the radial 

boundary of the nSOLT simulations at x = 10.63 cm (x = Lx). [Associated dataset available at 

https://doi.org/10.5281/zenodo.1342773] 

Agreement between the D density profiles in Fig. 2 is remarkable in the near-SOL and 

edge regions. The discrepancy in the mid-SOL, apparent for shot 142214 for 2 cm < x < 8 cm 

in Fig. 2(a), is due to dissociation physics modeled in DEGAS 2 but not in nSOLT.   

https://doi.org/10.5281/zenodo.1342773
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Dissociation is the only source of D in the DEGAS 2 simulations, and it is distributed 

throughout the SOL.  The discrepancy between the profiles in Fig. 2 (a), is caused by a localized 

rise in the dissociation rate of D2.  (There is a constant source of D2 at the wall in the DEGAS 2 

simulations, and the molecules are depleted by dissociation as they propagate into the SOL.  See 

Fig. 11 of reference [28].)    There is no such distributed source of D in the nSOLT simulations; 

the only source is at the simulation boundary at x = 10.63 cm.  That boundary condition, Eq. 

(3), is the extent of the D2 dissociation modelling in nSOLT. 

A much smaller discrepancy between the profiles is observed in the simulations of shot 

139412, shown in Fig. 2(c and d).  Comparing the TS profiles for the two shots, Fig. 1, there is a 

knee in the electron density profile for shot 142214 (1 cm < x < 5 cm) in comparison with the 

density profile for shot 139412.  This implies a stronger dissociation source that may be 

responsible for the relative bulge in the DEGAS 2 profile in Fig. 2(a).  

Gradient scale lengths () computed from the profiles of Fig. 2 (a and b) are compared in 

Fig. 3.  Agreement is good in the edge and near-SOL but deteriorates outside of this region.  The 

separation for x > 2 cm is due to the enhanced dissociation source  that drives a larger D 

density gradient in the DEGAS 2 simulation, as discussed above.  The departure for x < -7 cm 

is due, in part, to the proximity of the nSOLT boundary condition: there are no neutrals entering 

from the core-side boundary, but there are neutrals escaping.  With the boundary moved from x 

= -10.63 cm to x = -31.89 cm (by doubling the simulation domain at fixed resolution) the roll-

over of the gradient scale length moves with it, as demonstrated by the dashed line in Fig. 3.  

Although the discrepancy in  grows to about 50% for x < -7 cm, the density in this region is 

smaller than at the separatrix by at least two orders of magnitude and is rapidly decreasing; see 

Fig. 2(b).   

 

Fig. 3.  Density gradient scale length,  
1

Dln(n ) / xd d


  , for the DEGAS 2 (a) and nSOLT 

(b) simulations of shot 142214 corresponding to Fig. 2(a).  Curve (c) is for the same nSOLT 

simulation parameters but on a 2x larger domain with the core-side boundary moved from x 

= -10.63 cm to x = -31.89 cm.  The plot is limited to -20 cm < x < 5 cm for clarity.  The 
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wiggles in the DEGAS 2 curve (a) result from a stair-step interpolation of the density. 

[Associated dataset available at https://doi.org/10.5281/zenodo.1342773] 

To explore the sensitivity of the density profile to CX physics, in particular the disparity 

observed in Fig. 3, the DEGAS 2 and nSOLT simulations of shot 142214 were re-run without 

CX.    [It was observed previously in the DEGAS 2 simulations that while the elimination of CX 

decreased nD significantly in the core (viz., decreased the D penetration depth), the gradient scale 

length was unaffected within a neighborhood of its minimum value, near the separatrix (c.f., Fig. 

3). This observation has implications for edge neutral density (ENDD) and gas-puff imaging 

(GPI) camera diagnostics that depend on atomic emission intensities, [28] and, in part, motivated 

the following investigation.]   

For fixed puff (N0) and D2 entrance velocity (vD2),  nSOLT simulations were run for 

different choices of  the  Franck-Condon (FC) temperature (TFC) in Eq. (3).  In the absence of 

CX, we found that the penetration depth scales with the FC velocity in the nSOLT simulations, 

 

 

0 0

FC SOL SOLv v v G(x , v) / v G(x , v)d d

 

    . (9) 

[vFC ~ TFC
1/2

; see Eq. (3).] This dependence of the penetration depth on the “muzzle velocity” of 

the puffed neutrals was exploited in the nSOLT simulations to improve agreement between the D 

density profiles in the core region, where the density is exponentially small.  See Fig. 4. 

         

Fig. 4.  D density profiles (a) and their gradient scale lengths (b) from DEGAS 2 (solid black) 

and nSOLT (dashed) simulations of shot 142214, both run without CX physics.   The nSOLT 

simulations are for three different values of the Franck-Condon temperature TFC (inset, in eV) in 

Eq. (3). [Associated dataset available at https://doi.org/10.5281/zenodo.1342773] 

The value of TFC that gives the best agreement with the DEGAS 2 simulation, 1.24 eV, is 

significantly less than the 3 eV used in the cases with CX.   The difference between the 

ionization rates was ruled out as a candidate explanation of this disparity by comparing the fit 

used by nSOLT, Eq. (7), to the tabulated version used in the DEGAS 2 simulation.  As 

https://doi.org/10.5281/zenodo.1342773
https://doi.org/10.5281/zenodo.1342773
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mentioned above, it was found that the ionization rates agree to within 20% over the ranges 10
17

 

m
-3

 < ne < 10
19

 m
-3

 and 5 eV < Te < 5 keV, which includes these simulations, though the electron 

density is marginal.  (See Fig. 1.)  Instead, it is believed that the disparity is due to significant 

differences between the two models in the energetics of D production by dissociation. 

The D atoms are not distributed in velocity according to Eq. (3) in the DEGAS 2 

simulations, where the distribution function accounts for multiple break-up paths by which D2 

dissociates into D.  In addition to the direct 3 eV path, there is a path that involves the molecular 

ion 2D and results in a 4.3 eV D atom and still other paths that have Te - dependent dissociation 

energies.  Suffice it to say: the DEGAS 2 D energy distribution function  is not well-modelled by 

a single-temperature Maxwellian.  (See [19] and references therein.)  To compensate for the 

relatively limited dissociation model in nSOLT, TFC may be regarded as a parameter that can be 

adjusted in Eq. (3) to improve agreement with the DEGAS 2 D density profiles, particularly for 

measurements in the tenuous tail of the core-side profile dominated by D in the high-energy tail 

of the distribution function.   

The sensitivity of the core-side gradient scale length () to TFC observed in no-CX 

simulations, Fig. 4(b), is greatly reduced when CX physics is restored to the simulations; three 

nSOLT simulations corresponding to those depicted in Fig. 4, but including CX, showed a 

negligible dependence of  on the value of TFC while, as without CX, the core-side D density 

increased with TFC.   

The insensitivity of  to TFC indicates that CX has thermalized the neutrals with the ions, 

where the CX rate (~ 0.3
iT ) grows appreciable in the edge and near-SOL.  CX heating of the 

neutrals is seen in the contour plot of the D energy flux in Fig. 5.  To illustrate the observed 

effect of CX on  , suppose the ionization mean free path is FC iz
v / v  in the SOL  and  

iziv / v in the core, where vFC is the Franck-Condon velocity corresponding to TFC, given in 

Eq. (9), and vi is the ion thermal velocity.  The density of neutrals reaching the edge from the 

wall decreases with vFC, and the density of those continuing into the core falls off exponentially 

with scale length  = 
iziv / v , independent of vFC.  In the absence of CX, the scale length is  

= FC iz
v / v in the SOL and in the core, qualitatively consistent with Fig. 4(b). 
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Fig. 5.  Contour plot of the local D energy flux divided by the total in-coming (v < 0) flux at the 

wall, 3 33 3
D D x2 2

v < 0

v m v G(x,v) / ( ) v m v G(x=L ,v)    , as a function of radius (x) and velocity-

signed energy, from the nSOLT simulation of shot 142214.  (a)  Franck-Condon D atoms 

injected at the wall stream across the SOL.  CX-heated D diffuses into the core (b) and streams 

across the SOL (c) from the edge.  The total in-coming (v < 0) energy flux iskW/m
2
 , and 

the total out-going energy flux is kW/m
2
,
  
at the wall. [Associated dataset available at 

https://doi.org/10.5281/zenodo.1342773] 

The picture of energy flux in Fig. 5 suggests that injected neutrals free-stream to the edge 

where they are depleted by ionization and heated by charge exchange.  The CX-heated neutrals 

that continue into the core are consumed by ionization, while those returning to the SOL escape 

ionization and free-stream back to the wall.   

A local mean-free-path analysis helps to identify the deposition domain for the injected 

neutrals and the origin of heated neutrals reaching the wall.  The local D mean-free-paths (mfp) 

for CX and IZ are illustrated in Fig. 6 for two choices of velocity corresponding to a) the 

maximum injected energy flux from the wall, at ED = 15 eV (v < 0), and b) the maximum energy 

flux reaching the wall from the SOL, at ED = 527 eV (v > 0).  (See Fig. 5.)   mfp (x) is simply 

proportional to the velocity (v0) corresponding to ED:  mfp (x) = |v0 | / (cx, iz), with the collision 

rates given by cx = nehcx and iz = nehiz, and with hcx and hiz given by Eqs. (7) and (8), 

respectively.  In Fig. 6(a), we plot the local attenuation rates (1/ mfp) for the injected 15 eV D, 

and note that the corresponding plot for the 527 eV D (not shown) is the same but rescaled by 

(15/527)
1/2

 = 1/6.  It is seen that attenuation of the injected neutrals grows significant starting at 

x = 1 cm and achieves maximum rates for CX and IZ at x =  cm and  cm, respectively. 

https://doi.org/10.5281/zenodo.1342773
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This suggests a common domain for the deposition of injected D and for the origin of CX-heated 

D, viz.,  2 cm < x < 1 cm, consistent with Fig. 5. 

The horizontal contour lines in the SOL (v > 0) of Fig. 5 suggest that CX-heated D is 

free-streaming to the wall directly from the edge region, and the local  mfp (x) profile enforces 

this observation.  We plot the distance to the wall minus  mfp (x) for the 527 eV D in Fig. 6(b) 

and cut the plot off where that difference is negative, i.e., where the mean free path is greater 

than the distance to the wall.  It is seen that all 527 eV (and greater) D that enter the SOL free-

stream to the wall. 

      

Fig. 6.  For the local mean-free-path,  mfp (x) = |v0 | / (cx, iz): (a) 1/ mfp (x) for the velocity at 

which the injected D energy flux from the wall is maximized (ED = 15 eV, v0 = -22 km/sec) and 

(b) the distance from x to the wall, dwall(x) = Lx - x, minus  mfp (x) for the velocity at which the 

CX-heated D energy flux from the edge  is maximized at the wall (ED = 527 eV, v0 = 130 

km/sec). The collision rates are given by cx = nehcx and iz = ne hiz , with hcx and hiz given by 

Eqs. (7) and (8), respectively.  The plasma profiles are from the nSOLT simulation of shot 

142214. [Associated dataset available at https://doi.org/10.5281/zenodo.1342773]

https://doi.org/10.5281/zenodo.1342773
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IV.  1D neutral-plasma evolution in nSOLT 

Encouraged by the agreement between DEGAS 2 and nSOLT simulations for fixed 

plasma profiles, described in Sec. III, we take the logical next step and allow the plasma to 

evolve self-consistently with the neutrals in nSOLT but restrict the plasma evolution to 1D, using 

radial diffusion as a proxy for turbulent transport.  The model solved here consists of Eqs. 1 and 

the 1D version of Eqs. 2 which is given explicitly in the appendix (A5).    We do not impose Ti = 

Te here as we did in Sec. III. 

In Sec. III our goal was to demonstrate that the neutral evolution model in nSOLT can 

recover the neutral profile obtained by DEGAS 2 simulations for two particular H-mode shots on 

NSTX for which detailed data concerning the distribution of the neutral species was available.   

Our goal in the present section is to demonstrate that the simulations can recover, self-

consistently and with appropriate neutral fueling at the far-SOL boundary, values of plasma 

density and temperature observed for a class of discharges, rather than for a particular shot.  The 

physical parameters used in the simulations are typical of Ohmic L-mode shots on NSTX, for 

which a large data base and considerable analysis is available.[30] 

Self-consistent steady states, sustained by neutral gas puffing at the far-SOL boundary 

(N0  > 0, R0 = 0 and Ri = 0 in Eq. 4)  and plasma heating in the core (Sn = 0, SPe > 0 and SPi > 0 in 

Eqs. 2), are reached in the simulations on millisecond time scales for the NSTX parameters.  The 

approach to equilibrium is illustrated in Fig. 7.  Included in the figure are earlier histories of ne 

and Te for a simulation that reached equilibrium sustained by direct injection of plasma in the 

core (Sn  > 0) and without neutrals (N0 = 0).  That equilibrium was used as the initial condition 

for the appended simulation with no direct injection in the core (Sn = 0) and with neutral puff 

injection at the wall (N0 = 5 x 10
11 

cm
-3

).  In other words, Sn was turned off and the puff was 

turned on at t = 7 ms.  The fixed source Sn (for t < 7 ms) and the ionization source hizn0ne  

(plotted for the steady state reached in the puff-driven case, t > 7 ms) are plotted in Fig. 8. 

The injection of plasma particles and energy by fixed sources in these 1D diffusive 

simulations requires further description.  Focusing on the density, with similar remarks holding 

for the ion and electron energy injection, the source function Sn(x) is a Gaussian contained within 

a core-side “buffer zone.”  The diffusion coefficient Dn(x) is larger in the buffer zone than it is in 

the edge and SOL.  (See Fig. 8.)   The radial density gradient is held to zero on the core-side 

boundary (x = -10.63 cm), so the diffusive flux there is zero, regardless of the diffusion 

coefficient.  However, a sufficiently large, and perhaps unphysical, value of Dn will keep the 

density flat in the buffer zone, despite the presence of the localized source, and so render the flux 

into the edge region (x > -5 cm) independent of the location of the source, as in these 

simulations.  (In turbulence simulations, not reported here, the large diffusion coefficient keeps 

negative fluctuations, i.e. holes, from reaching the boundary where, otherwise, they can coalesce 

in large vorticity cells.) Thus the location and width of Sn(x) are ad hoc in these simulations and 

were fixed as indicated in Fig. 8. 

We control the flux of particles entering the edge from the core by adjusting Sn for a 

particular choice of Dn in the buffer zone, and we control the flux of particles in the edge and 
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SOL regions (x > -5 cm) by adjusting the smaller, more physical value of Dn in those regions.  

The value of Dn in the edge and SOL controls the “turbulent” transport there, by proxy, and is 

either 3 m
2
 /sec or 30 m

2
 /sec, as indicated in the figure captions in this section of the paper. 

 

 

Fig. 7.  Electron density (a) and temperature (b) histories at the separatrix from two nSOLT 

simulations: the first (0 ms < t < 7 ms) was fueled by direct plasma injection in the core and no 

neutrals (Sn > 0 and N0 = 0); the second (7 ms <  t < 14 ms) continued with Sn = 0 and N0 = 5 x 

10
11 

cm
-3

.  In both cases, Dn = 3 m
2
/sec and DPe = DPi = 30 m

2
/sec, in the edge and SOL, and the 

maximum core-side heating rates are SPe =  0.65 MW/m
3
 and SPi = 6.5 MW/m

3
.  The dashed 

horizontal lines bound the ranges observed in Ohmic L-mode shots on NSTX for a large dataset 

[30]; the upper bound in (a) is off the graph at 6 x 10
12

 cm
-3

. [Associated dataset available at 

https://doi.org/10.5281/zenodo.1342773] 

No attempt was made to adjust the particle sources, Sn and hizn0ne, to give the same 

initial and final states in the simulations depicted in Figs. 7 and 8.  That is impossible, a priori, 

because the ionization source depends on the evolving fields.  Indeed it is this self-consistency of 

neutral source and plasma profiles that motivated the nSOLT development. It is simply to be 

noted that equilibrium density and temperature profiles typical of NSTX Ohmic L-mode shots 

can be obtained either by direct injection in the core or by neutral fueling at the wall, and that 

similar plasma profiles are obtained for sources that are alike in magnitude while differing in 

radial distribution.   

  

https://doi.org/10.5281/zenodo.1342773
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Fig. 8.  Plasma particle sources, Sn and hizn0ne, for the simulations of Fig. 7.  Sn is a constant 

source that is non-zero only for 0 ms < t < 7 ms in the simulations of Fig. 7. The ionization 

source, hizn0ne,  is non-zero only for 7 ms < t < 14 ms, and is plotted here for the equilibrium 

reached at the end of the puff-driven simulation (t = 14 ms) in Fig. 7.  The dimensionless density 

diffusion coefficient nD̂ is also plotted (dashed), re-scaled to fit in the plot frame with the 

sources which are plotted in the units indicated on the vertical axis. [Associated dataset available 

at https://doi.org/10.5281/zenodo.1342773] 

Figure 9 summarizes results from ten nSOLT simulations fueled by neutral puffing at the 

wall and with no direct plasma injection in the core, as in the simulation depicted in Fig. 7 for t > 

7 ms.  A scan of five puff densities (N0) and two values of the plasma density diffusion 

coefficient (Dn) was performed, with the higher (lower) Dn values corresponding, by proxy, to 

stronger (weaker) turbulent transport. The electron density rises, and the electron temperature 

falls, with increasing puff density.  Stronger transport (Dn) removes density to the SOL where it 

drains away along open field lines, requiring stronger neutral fueling to sustain it within 

prescribed limits, as seen in Fig. 9(a).  The increase in Te with Dn, apparent in Fig. 9(b) at the 

lower values of N0, is caused by the decrease in ne with stronger transport; the plasma is heated 

by constant sources of energy density (SPe and SPi), so the sources of energy per particle (Te and 

Ti) are inversely proportional to the density.  See Eqs. 2(b and c).   

Equilibria typical of H-mode discharges on NSTX have been found as well, by increasing 

the puff density and the electron heating from the values used in these Ohmic L-mode 

simulations, and will be described in a future publication. 

  

https://doi.org/10.5281/zenodo.1342773
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Fig. 9.  Electron density (a) and temperature (b) at the separatrix as functions of the puff density 

(N0) from nSOLT simulations in steady state for two values of the density diffusion coefficient: 

Dn = 0.3 m
2
/sec (solid dots) and 3.0 m

2
/sec (open squares).  DPe = DPi = 30 m

2
/sec, in the edge 

and SOL, and the maximum core-side heating rates are SPe =  0.65 MW/m
3
 and SPi = 6.5 

MW/m
3
, as in Fig. 7.  The dashed horizontal lines bound the ranges observed in a published 

database of Ohmic L-mode shots on NSTX.[30] [Associated dataset available at 

https://doi.org/10.5281/zenodo.1342773] 

Turning to the mean flows, the neutrals reduce the mean EB flow speed and its shearing 

rate, consistent with previous observations from XGC1 simulations, [2] as seen in Fig. 10.  Prior 

SOLT simulations [9] found mean flows in the SOL that were greater in magnitude than those 

inferred from GPI diagnostics on NSTX.  The simulated flows could be brought into agreement 

with the GPI data by introducing ad hoc vorticity dissipation, and it was hoped that the same 

encouraging result might be obtained with more realistic neutral friction modelling.  However, 

when the simulations here were repeated without the neutral friction, Eq. (2f), in the vorticity 

evolution, the results of Figs. 9 and 10 were negligibly altered; the flow and shearing rate 

reductions observed in Fig. 10 are primarily the result of decreasing plasma temperature gradient 

in the SOL with increasing N0.    The minimum velocity, i.e., the largest negative velocity in the 

SOL, Fig. 10(a), occurs as the parallel connection length decreases with increasing radius, 

tending to enforce sheath-dominated potentials having   B = 3Te(x) and vEy  xB 

3xTe(x).[31]  Ionization reduces the electron temperature gradient, and sheath physics 

consequently reduces the flow and the flow shearing rate.  The electron temperature gradient and 

vEy are compared in Fig. 11 for three of the cases in Figs. 9 and 10. 

  

https://doi.org/10.5281/zenodo.1342773
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Fig. 10.  The maximum negative poloidal EB velocity (vEy) measured in the SOL (a) and the 

root-mean-square (r.m.s.) shearing rate (vEy) of that flow over the SOL (b), as functions of N0, 

for the nSOLT simulations of Fig. 9. [Associated dataset available at 

https://doi.org/10.5281/zenodo.1342773] 

 

 

Fig. 11.  The radial gradients of B (solid) and of dashed) in the SOL for N0  = 1 (a), 2.5 (b) 

and 5 (c) x 10
11

 cm
-3

 and all for Dn = 3.0 m
2
/sec, i.e., the left-most three boxes in Figs. 9 and 10.  

B = 3Te is the Bohm potential and x = vEy , the poloidal EB velocity. [Associated dataset 

available at https://doi.org/10.5281/zenodo.1342773] 

Profiles of the mean flows for N0 = 5x10
11

 cm
-3

 and Dn = 3.0 m
2
/sec (the open box in the 

middle of Figs. 9 and 10) are shown in Fig. 12.  Notice that vEy + vdiy  0 , i.e., the EB and ion 

diamagnetic flows are nearly “mirrored” in the core region (x < 0).  Mirroring could sustain 

sheared-flow suppresion of the interchange instability with a growing ion pressure gradient [vEy′ 

= - vdiy′ = - (Pi′/n)′] and so enhance access to a durable H-mode. [32]   In the present simulations, 

damping of the total flow, by CX friction and vorticity diffusion, encourages the formation of 

mirrored flows in the core. 

https://doi.org/10.5281/zenodo.1342773
https://doi.org/10.5281/zenodo.1342773
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In these 1D simulations (y = 0), the vorticity evolution equation (2d) reduces to 

 2
x ρ x y // //tρ (D ρ)  ,jf       

or, using (2e) and (2f) and integrating once in x, to 

 
x

T x ρ x T cx T cx iz 0y // //tnv [D nv ] nv  ( ) nv dx   ,j             (10) 

where nvT = n(vEy + vdiy), cx = hcx n0 and iz = hiz n0.  On the closed flux surfaces (x < 0), the 

parallel current density is purely a fluctuation, [27]  of which there are none in 1D, so 
/ / / /j 0  .   

Thus, to within a (generally small) correction from the neutral flow (v0y), mirrored flows (vT = 0) 

are an equilibrium solution (t = 0) of Eq. (10) in the core.  In the SOL, however, 
|| ||j  is 

determined by sheath physics and is not ignorable.  Furthermore, to the extent that the SOL is 

electrically connected to the sheath, vEy is determined by the Bohm potential, vEy  xB = 3xTe, 

and is negative, in general, as is vdi = Pi′/n, precluding mirrored flows.  The transition from vdiy-

mirrored to sheath-dominated vEy is apparent in Fig. 12. 

  

Fig. 12.  Mean flow profiles for the simulation with N0 = 5x10
11

 cm
-3

 and Dn = 3.0 m
2
/sec (the 

middle square in Figs. 9 and 10).  Notice that 10v0y is plotted. [Associated dataset available at 

https://doi.org/10.5281/zenodo.1342773] 

Earlier simulations also led us to suspect that the flow shearing rates were large enough 

to drive the Kelvin-Helmholtz (K-H) instability in the edge region [33] and so to threaten access 

to a sustained H-mode.  Although neutrals may enable such access by reducing the K-H growth 

rate (~|vEy|), the reduced velocity shear may likewise allow an otherwise suppressed interchange 

instability if the interchange growth rate exceeds the flow shearing rate. [34]  The study of the 

https://doi.org/10.5281/zenodo.1342773
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effects of neutrals on plasma instabilities requires 2D analysis and turbulence simulations and 

will be pursued in the future. 

 

V.  Concluding remarks 

We have extended the 2D SOLT model of plasma turbulence in the SOL to include 

interaction with neutral atoms, resulting in a new code called “nSOLT.”  The neutrals are 

evolved in 1D (x,vx) by a radial Boltzmann equation, including charge exchange and ionization 

physics, in which interaction with the plasma is represented by its bi-directionally (y) averaged 

fields.   

As a first verification exercise, we compared neutral deuterium density profiles obtained 

from kinetic Monte Carlo (DEGAS 2) simulations to those obtained from nSOLT simulations for 

fixed plasma density and temperature profiles measured on two NSTX H-mode discharges.  

Aligning the nSOLT and DEGAS 2 neutral densities at a point in the far-SOL led to good 

agreement between the time-asymptotic equilibrium neutral profiles throughout the SOL and 

edge regions.  Discrepancies were attributed to the volume-distributed molecular (D2) 

dissociation source of D in DEGAS 2, compared to the simple boundary influx of Franck-

Condon D in nSOLT.   

Comparing nSOLT and DEGAS 2 simulations conducted with and without CX collisions 

confirmed the observation from earlier DEGAS 2 simulations [28] that, within a neighborhood of 

its minimum value in the edge region, the neutral gradient scale length is insensitive to CX 

physics.  That is, the most rapid fall-off of the neutral density is predominantly due to ionization. 

In the nSOLT simulations without CX, the neutral penetration depth scaled with the Franck-

Condon velocity (vFC ~ TFC
1/2

), and it was found that a value of TFC significantly lower than the 

canonical 3 eV was necessary in order to match the DEGAS 2 profile obtained without CX.  

Drawing physical implications from this result is difficult due to multiple spikes in the 

distribution of deuterium velocities in DEGAS 2 simulations that correspond to different 

molecular dissociation paths included in the model.  The single Maxwellian distribution function 

used in nSOLT cannot account for the richness of this velocity distribution, and TFC must be 

regarded as a free parameter that can be adjusted to align the neutral density profiles, particularly 

where they are exponentially small deeper in the edge region. 

In these simulations, the sensitivity of the neutral penetration depth to TFC is lost in the 

presence of CX which thermalizes the neutrals with the ions in the edge region, effectively 

giving them the ion thermal speed and a penetration depth (vi / nihiz) independent of TFC.  

Contour plots of the neutral energy flux in phase space and a local MFP analysis were used to 

locate the deposition zone of cold (TFC) neutrals injected from the wall, and the birth zone of 

CX-heated neutrals returning to the wall. 

As a first illustration of the self-consistent neutral-plasma evolution in nSOLT, we 

performed 1D simulations in which linear diffusion served as a proxy for turbulent transport.  By 

adjusting the neutral fueling (“puff”) density at the wall, and with no other source of plasma 
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particles, we found time-asymptotic equilibria with electron densities and temperatures typical of 

Ohmic L-mode shots on NSTX.  Flow damping by neutral friction was found to be negligible 

compared to the flow reduction brought about by electron temperature profile modification due 

to ionization in these simulations; ionization reduces the temperature gradient, and sheath 

physics ( ~ B = 3Te) serves to reduce the mean poloidal EB flow (vEy = x) in the SOL.  It 

was observed that the flow reduction could lead to improved agreement between mean poloidal 

flows measured by GPI diagnostics on NSTX and those observed previously in SOLT 

simulations.  Neutral friction encourages the formation of mirrored EB and ion diamagnetic 

flows in the edge and so may provide access to a durable H-mode, as the EB flow shearing rate 

grows with the ion pressure gradient in the mirrored state.  But the friction profile also depends 

on sheath physics in the near-SOL.  Thus, neutrals are expected to be important for establishing 

confinement-enhancing flows in the edge and a link between conditions at the divertor and those 

flows.  Questions concerning confinement, e.g., instability suppression by neutral friction, will 

be pursued with the 2D-turbulence version of nSOLT. 

In conclusion, it is seen that the reduced neutral kinetic model presented here may 

provide economical and reasonably accurate simulations that couple plasma and neutral profiles 

in the edge region.  Such coupled-profile models will be essential to investigate quasi-steady 

turbulent states in the edge and SOL regions with self-consistent particle sources and hence to 

enable increasingly realistic modelling of edge and SOL profiles, neutral and plasma fluxes to 

the wall, and edge plasma confinement modes. 
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Appendix: neutral-plasma interaction model equations 

In section A1 we derive the 1D neutral kinetic model, Eqs. (1), from the 3D Boltzmann 

equation including charge exchange and ionization collision integrals.  In A2 we derive 

expressions for the terms describing neutral interactions in the plasma evolution equations, Eqs. 

(2), that are added to the SOLT model.  A discussion of momentum and energy conservation is 

given in A3.  A note on our neglect of radiative recombination in the model is given in A4, and 

the explicit form of the plasma evolution equations in 1D, solved in Sec. IV of the main text, is 

given in A5. 

 

A1.  A 1D Boltzmann model for the neutral evolution 
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Let the 3D ion and neutral distribution functions be denoted by f and g respectively.  In 

the presence of charge exchange and ionizing collisions, the Boltzmann equations [35] for f and 

g are 

 

 x iz et ( , ) h nf f X f g g     v  (A.1) 

and 

 x iz et ( , ) h ng g X f g g    v  (A.2) 

where  

  3
cx( , ) v (v,v ) v v (v) (v ) (v ) (v)X f g d f g f g        (A.3) 

 

and cx denotes the cross section for the CX collision. We have suppressed Coulomb collision 

and acceleration ( va f ) terms in (A.1) to focus attention on the neutral interactions.  There is 

no acceleration term for neutrals because there is no mean force acting on the neutrals.  We 

ignore neutral-neutral collisions and radiative recombination.   

In (A.1) and (A.2) we have reduced the ionization collision integral, similar in form to the 

CX integral (A.3), by neglecting the neutral thermal velocity compared to the electron thermal 

velocity and replacing iz (v) v by its average (“ izv ”) over the assumed Maxwellian 

electron distribution function, [36] so the integral over v reduces to the electron number density, 

3
e en v (v )d f   .  This average ionization rate per particle, iz iz ev h (T )  , is a function of the 

electron temperature and is given explicitly in Sec. III. 

To simplify (A.3) similarly, we follow Hazeltine et al. [35] and assume that 

cx (v,v ) v v    is approximately independent of the relative velocity and replace it with its 

average over the Maxwellian ion distribution function.   This average CX rate per particle, 

cx cx iv h (T )  ,  depends weakly on the ion temperature, and the expression assumed for it in 

the simulations is given explicitly in Sec. III.   (Other authors take the cross section cx (v,v )   to 

be constant, [36] and retain the relative velocity  v v  without further approximation in the 

integrand.)   We note that the expression given in Eq. (8) breaks down at small Ti or large E0 

because it assumes that the ion energy is greater than the neutral energy.  

To model the neutral dynamics, in which the neutrals interact with the plasma only 

through the y-averaged plasma fields, we assume a mean-field ion distribution function ( f ) of 

the form 

 
2 2 2 3/2

i x y iy z i in exp (v (v v ) v ) / 2T / (2πT )f      
 

, (A.4) 
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where the over-bar denotes the y-average, and iyv is the sum of EB and ion diamagnetic mean 

flows.  Similarly we replace Te and Ti with their poloidal averages in izh  and cxh .  With these 

replacements, the y-averaged neutral Boltzmann equation is 

 

 
3

t x x cx i iz e(v ) h v  n h ng g f d g g g     
  , (A.5) 

where we assume periodic boundary conditions in y and no toroidal dependence. 

Integrating (A.5) over (vy, vz) yields the evolution model for the 1D neutral distribution 

function (G),  

  t x x cx 0 i iz eG (v G) h Fn Gn h n G       (A.6) 

 

where  

 y zG v v  d d g  ,  (A.7) 

 
2 1/2
x i iiF n exp v / (2T ) / (2πT )  

 
, (A.8) 

and 

 0 xn dv G.   (A.9) 

 

In order to describe the self-consistent neutral drag of the mean (binormal) plasma flows, 

we require an evolution equation for the y-component of the neutral fluid velocity.  The density 

moment of (A.5) is (with no volume source of neutrals in the present formulation) 

 

 t 0 x 0 0x iz e 0n (n v ) h n n     (A.10) 

and the vy moment is 

 

 3
t 0 0y x x y i 0 cx iy 0y iz e 0 0y(n v ) ( v v v ) n n h v v h n n vd g        , (A.11) 

 

where 3
0 0(x,y) (x,y)n v v vd g  , and the mean ion fluid velocity is the sum of the EB and ion 

diamagnetic velocities, i E di v v v .   In (A.11) we assume that the neutral source does not 

inject momentum, i.e. the neutrals are introduced at zero mean velocity.  Combining (A.10) and 

(A.11), we find 

 

 
3

t 0y cx i iy 0y 0y x 0 0x 0 x x y 0v h n (v v ) v (n v ) / n ( d v v v ) / ng       . (A.12) 
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While the flux 0 0xn v  in (A.12) is calculated from G, we require a closure ansatz for the last 

term, and we choose
3

x y 0 0x 0yd v v v n v vg  .  With this choice, the result 

 

 t 0y 0x x 0y cx i iy 0yv v v h n (v v )      (A.13) 

 

has the form of a radial advection equation for v0y, in the presence of a “friction” force due to 

charge-exchange.  

Equations (A.6) and (A.13) comprise the neutral evolution equations in the nSOLT 

model, viz., equations 1(a) and 1(b) in Sec. II. 

 

A2.  Plasma evolution due to neutral interactions 

 

The additional terms to be added to the plasma evolution equations follow from the 

velocity moments of the ion Boltzmann equation (A.1) but with the CX and IZ rates represented 

by their mean values, as described above, and the neutrals by the 1D distribution function G.  

The density, velocity and energy moments of (A.1), using (A.3), are  

 

 iz e 0t (i, e)n h n n ...   , (A.14) 

  i i cx i 0 0 i iz e 0 0t (n ) h n n h n n ...    v v v v , (A.15) 

and 

  3 3
i i cx i 0 i 0 iz e 0 02 2t n T h n n T E h n n E ...      , (A.16) 

where 

 

 3
iv nd f  , (A.17) 

 3
i iv nd f  v v , (A.18) 

 3 2 31
i i2 2

v v n Td f  , (A.19) 

and 

 3 2 2 21 1
x x 0 02 2

v v v v G n Ed g d   . (A.20) 

 

The ellipsis (…) represents the evolution without neutral interactions, i.e., the original SOLT 

model terms.  Electron and ion densities increase at the same rate in order to preserve quasi-

neutrality in (A.14).  We have introduced an isotropy parameter 
2
  to relate the 1D and 3D 

energy densities in (A.20);   
2
 = 1 corresponds to cold neutrals in (vy,vz), and  

2
 = 3 to 
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isotropic neutrals with temperature 2/3E0.  Notice that CX works to establish the isotropic 

equilibrium E0 = 3/2Ti in (A.16). 

Ionization also affects the electron energy.  The average energy loss per ionization (Eiz) 

includes the ionization energy itself (13.6 eV for D) plus a factor which accounts for the 

probability of electron impacts causing atomic level shifts plus radiation (unless these are 

explicitly accounted for by a radiation term). [37]  The electron energy equation is 

 

 3
e e iz e 0 iz2t n T h n n E ...     (A.21) 

Typical values of Eiz range from one to three times the atomic ionization energy, or 13.6 to 41 

eV for deuterium.[37] 

Using the plasma density evolution equations (A.14) in (A.16) and (A.21),  we find 

equations of evolution for the ion and electron temperatures:  

 

    2
i iz cx 0 0 i3tT h +h n E T ...     (A.22) 

and 

  2
e iz 0 iz3t eT h n E T ...      (A.23) 

 

These are the forms of the ion and electron energy equations solved in the nSOLT model. 

The ion momentum equation (A.15) implies a sum of CX and IZ force densities acting 

on the plasma flow: 

 

  cx i 0 0 i iz e 0 0h n n h n n  v v vf . (A.24) 

 

In the plane perpendicular to the B-field, the total ion fluid velocity is the sum of the EB and 

ion diamagnetic drifts, i i iP / n   v b b .  The evolution of nivi follows from charge 

conservation, / / / /J 0  J , including ion gyro-viscous terms, [38] [9] and may be written 

as an evolution equation for the generalized vorticity,  i in P       , extended to 

include the neutral interaction force (A.24) according to the recipe, [12]  

 

  i i
d

n P ...
dt

      b f ,  (A.25) 

 

given here in dimensionless Bohm units. The ellipsis (…) denotes the evolution absent neutrals 

contained in the SOLT model.  For example, a term similar to the neutral force density term, 

b f , describes the curvature and grad-B polarizing forces that drive the interchange 
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instability and propel the blobs in the SOLT model.  With the unit vector b in the z-direction, we 

have x y y xf f    b f , as written in Eq. 2(d) of Sec. II.   

Equations (A.14), (A.22), (A.23) and (A.25) comprise the plasma evolution equations in 

the nSOLT model, viz., equations 2(a-d) in Sec. II. 

 

A3.  Discussion of momentum and energy conservation 

 

The vx-moment of Eq. (A.6) is 

 

 2
t 0 0x x x x 0 0x cx i iz e(n v ) v v G n v (h n +h n )d     (A.26) 

 

where the integral of vxF vanishes for the Maxwellian F (A.8), and the neutral fluid momentum 

density is 0 0x x xn v v v Gd  .  Adding (A.26) to the y-average if the  x-component of the ion 

momentum equation (A.15) yields 

 

 t 0 0x t i ix cx 0 i ixy y
(n v ) n v h n n v ...      , (A.27) 

 

where here the ellipsis includes the neutral momentum flux in (A.26).  Similarly combining 

(A.11) and (A.15) yields 

 

 t 0 0y t i iy cx 0 i iy i iyy y
(n v ) n v h n n v n v ...

 
      

 
 (A.28)   

 

It follows that, while ionization conserves neutral + ion momentum, charge exchange does so 

only if i iy i iyy
n v n v 0   and i ix y

n v 0 , which are trivially true of the 1D plasma 

evolution (y = 0) described in the main text.  These residual momentum terms originate in our 

use of poloidally averaged plasma densities in the neutral kinetic equation (A.6) and would be 

absent had we used those mean densities in the plasma equations as well. 

The residual momentum terms are the poloidal averages of products of fluctuations,  

 

i iy i iy i iyy y
n v n v n v    

and  

i ix i Ex i dix i y y i i yy y y y
n v n v + n v n P n            ,  
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and are expected to be small in comparison to the mean momentum in the edge region.  In the 

SOL, where fluctuation levels can be large compared to the mean momentum, end-loss along 

open field lines is also a sink for radial momentum, and it will dominate the residual loss terms if 

n0hcx < 1/// , i.e., if CX is slower than parallel loss, which is consistent with the long neutral 

mean-free-path limit in which the averaging over blob structures is appropriate. 

The vx
2
 -moment of (A.6) is 

 
2 2

3
t 0 0 x x x cx i i 0 0 0 i iz e 0 0

2 2
(n E ) v v G h n T n n E n h n n Ed

  
      

  
  (A.29) 

with 0 0n E  defined in (A.20).  Adding (A.29) to the y-average of the ion energy equation (A.16) 

yields 

 
2

3 3
0 0 i i cx 0 i i i iy y2 2 2

tE ) n T h n n T n T ...t (n
 

       
 
 

, (A.30) 

 

where the ellipsis (…)  includes the energy flux in (A.29).  Ion + neutral energy is conserved 

only if  
2

3
i i i iy2 2

n T n T 0


  , as is the case for the 1D plasma evolution described in the main 

text where, in addition,  
2
 = 3 (isotropy) was assumed.  Otherwise, (A.30) suggests that CX 

between isotropic ions and anisotropic neutrals (
2
 < 3) is dissipative; for 

2
 < 3, fast ions 

charge-exchange into fast neutrals whose energy in vy and vz is (partially, depending on 
2
) lost 

to the model.  But in the long mean-free-path limit, this CX loss can be insignificant compared to 

the rate at which neutral energy is lost to the wall.  Integrating (A.29) from the edge to the wall, 

the energy flux term (second on the left) may be approximated as (
2
/2) n0v0E0 and the first CX 

term on the right as (
2
/2) hcxn0niTiwhere v0 is a typical neutral velocity andis the distance 

from the edge to the wall.  The ratio of the flux to the CX term is thus v0 E0 / (cx Ti 

0,cx/ E0 / Ti , where cx = hcxni is the neutral CX rate, and 0,cx = v0 /  cx is the 

mean-free-path.  Thus in the long MFP limit the neutral energy flux to the wall dominates the 

dissipation due to CX. 

 

A4.  A note on the neglect of radiative recombination 

 

Radiative recombination is potentially a sink for ions and a source for neutrals which we ignore in 

the modeling.  The radiative recombination rate per particle for electron capture to the ground state 

of hydrogen is 

 

1/2
20 1/3 3

rec e e
e

I 1
h 5.2 10 0.43 ln(I/T ) 0.469(I/T )   m / sec

T 2
x     

     
  

, (A.31) 
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where Te is expressed in electron volts (eV), and the ionization potential energy is I = 13.56 eV.  

The expression (A.31) is given for Te < 400 eV in reference [39].  Comparing this rate to that for 

ionization used in this study, Eq. (8), we find that hrec = hiz at Te = 1.32 eV, well below the 

ionization energy, with hiz > hrec if Te > 1.32 eV.  (At Te = I = 13.56 eV we find hiz = 9.54x10
-15

 

m
3
/sec and hrec = 4.67x10

-20
 m

3
/sec.)  Although Te ~ 1 eV may exist in the immediate 

neighborhood of the divertor, such low temperatures are not found in our simulations of the edge 

and SOL for parameters pertinent to NSTX.  Recombination would be important if the nSOLT 

model were adapted for application to the divertor region in detached conditions. 

 

 

 

A5.  nSOLT model equations in one dimension 

Here we write the model plasma evolution equations that result from Eqs. 2 (a-e) under 

the assumption that all fields are independent of y, the bi-directional independent variable, and 

only depend on the radial variable (x) and on time (t).  These, along with Eqs. 1, are the 1D 

model equations solved to obtain the results presented in Sec. IV of the main text. 

The 1D model plasma equations are obtained from equations 2 (a-e) by setting all partial 

y-derivatives equal to zero, y 0  .  Under this assumption of no y-dependence, the convective 

derivative of each 1D field is zero (e.g., E y x x yv n n n 0         ), and the total time 

derivative reduces to the partial time derivative ( t td   ).  The gradient operator acts only in the 

x-dimension, x xe   .  Thus there is only diffusive, but no turbulent, radial transport in the 1D 

model.  Notice that all of the terms following / / / /j   in Eq. 2 (d) vanish because the velocities 

vE and vdi are strictly in the y-direction, viz., E y x
ˆv b e      and di i y x i

ˆnv b P e P    , 

so that both operators E x yv      and di x i ynv P     give zero when applied to fields 

that are independent of y.  Similarly, the curvature drive in Eq. 2 (d), e i2b κ (P P )    , is 

absent in 1D.  The following equations A.(32-36) constitute the 1D nSOLT plasma model 

corresponding to Eqs. 2 (a-e) given in Sec. II of the main text. 

 

e x x e iz 0 e / / //t n nn (D n ) S h n n        , (A.32) 

e x e x e e e x x e e e n e

e2
iz 0 iz e / / e// / / //3

e e

t Pe n PeT (D n T ) / n T (D n ) / n (S T S ) / n

T2
        h n ( E T ) q  , 

3n n

         

      
 (A.33) 

i x i x i i i x x i i i n i

2 i
iz cx 0 0 i / / i// / / //3

i i

t nPi PiT (D n T ) / n T (D n ) / n (S T S ) / n

T2
       (h h )n ( E T ) q  ,

3n n

         

       
 (A.34) 
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2
x ρ // //t x yρ (D ρ) ,jf       (A.35) 

 

with  

  x x x in P      . (A.36) 

 

Expressions for the parallel gradient terms ( / / / / / / e// / / i// / / / /, q , q , and j     ) are 

unchanged from Eqs. 2 (a-d) and are given in our published work. [27] 
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