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Abstract.  The possibility of employing rf to generate sheared flows in the edge plasma is
of great interest as a means of accessing improved regimes of tokamak confinement.  Here, we
develop an electromagnetic nonlinear eikonal theory (with k⊥ ρ ~ 1 and k/k unrestricted) of the
rf force terms which drive poloidal flow.  Various cancellations, e.g. amongst parts of the
electromagnetic and Reynolds stress terms, are exhibited analytically.  At the heart of our
calculation is the derivation of the nonlinear kinetic pressure tensor Π.  A general expression
for Π  is obtained in terms of simple moments of the linear distribution function.  In the
electrostatic limit, the resulting nonlinear forces are expressible entirely in terms of the linear
dielectric susceptibility tensor χ.  Application to the ion Bernstein wave case, with retention
of all Bessel function sums, is presented.  Comparison is made to simpler approximate
calculations.

INTRODUCTION

The possibility of employing rf to generate sheared flows in the edge plasma is
of great interest as a means of accessing improved regimes of tokamak confinement.  A
body of theoretical work [1-6] has established possible mechanisms and scenarios, and
serves as a plausible explanation of results that have been reported on a variety of
experiments [7-11]. Such novel applications of ICRF waves are interesting because
they could provide a degree of active external control over an internal transport barrier.

The basic idea [2] is that the poloidal component of force balance for the plasma
is strongly affected by the rf through the nonlinearities (essentially the poloidal
ponderomotive force Fy) giving rise to a net flow

Vy = Fy / γθnmi, (1)
where γθ is the neoclassical damping rate for poloidal flows.  Note that because Eq. (1)
derives from the fluid momentum equation, we require the force per unit volume on a
fluid element, subtly different from the single particle guiding center ponderomotive
forces for which a powerful formalism exists [12].  Thus an rf wave possessing the
right properties can drive a sheared poloidal flow, ∂Vy/∂x.  The desired flow drive
effects are particularly strong for the ion Bernstein wave (IBW) which has strong
nonlinearities because it has a slow group velocity (∂ω/∂k ~ vti) causing the wave
amplitude to be large for a given transmitted power.  Recent work [6] has incorporated
sheared poloidal flow generation theory into full wave ICRF codes.  Some limitations
of the earlier calculations are discussed in Ref. 6.  Many subtle cancellations have been
found to occur when all of the nonlinear terms relevant to a given ICRF scenario are
retained.  In the present work, we develop a complementary formalism to that described
in Ref. 6, based upon an eikonal expansion.  Our formalism leads to analytical results
which exhibit various cancellations explicitly, and which may therefore be a useful
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starting point for obtaining further physical insight into the underlying processes.
Excluded from discussion here are the radial ponderomotive force Fx which can

generate poloidal flows through F×B (normally, this is a small effect), or the toroidal
ponderomotive force which can drive toroidal flows.

PONDEROMOTIVE FORCE AND NONLINEAR PRESSURE TENSOR

We proceed directly from the species fluid momentum equation where the
Lorentz force is FL = ZenE + J × B/c and the total nonlinear ponderomotive force (PF)
on a fluid element is F = <FL> − ∇ ⋅<Π>.  Here the brackets <...> are a quasilinear
time average and  Π = m ∫d3v vv f is the nonlinear pressure tensor, and represents the
heart of our calculation.  First, however, we rewrite FL in a more convenient form.  

Consider the term <n1E1>, where E ≡ E1 is the applied wave. The linearized
density is n1 = (-i/Zeω)∇ ⋅J1 thus this term can be expressed entirely in terms of E and
the polarization vector P ≡ (4πi/ω) J1 = χ⋅E where χ is the species linear dielectric
tensor.  Moreover <J1 × B1> can also be written in terms of E and P by using
Maxwell's equations to write B1 in terms of E.  After some algebra which employs the
vector identity ∇ ⋅(JK) = K ∇ ⋅J + J⋅∇ K with K  = E* to eliminate ∇ ⋅J one can
express the total PF as [13],

16π F = [(∇ E*)⋅P  −  ∇ ⋅(PE*)  + cc] − 16π∇ ⋅<Π> (2)

In the fluid limit, where Π  = nmuu with u the fluid velocity, Eq, (2) is
equivalent to several other well-known forms for the PF [14].  When species summed,
the PF is also equivalent to the divergence of the Maxwell stress-tensor.  These latter
forms, however, are not as convenient for present purposes as Eq. (2).

Proceeding with a kinetic evaluation of <Π>, we split the contributions up
according to their gyrophase (φ) dependence,

<Π> = m∫d3v (vv − <vv>φ) f~  +  m∫d3v <vv>φ<f>φ (3)

= Πosc  +  Πavg

where f~ is the gyrophase dependent piece of the second order (quasilinear) distribution
function f = f2, and <>φ is a gyrophase average.

In the present paper, we focus on Fy due to radial (x) gradients of |E|2; thus, the
diagonal tensor Πavg does not contribute, and a discussion of it will be deferred to a
future publication.  Here, we show how to write Πosc in terms of E and moments of
the linearized distribution function f1, completing the implementation of Eq. (2).

To this end, we define the indefinite gyrophase integral M = ∫dφ (vv − <vv>)
which can be expressed in terms of dyads involving v⊥ , v||, and b = B0/B0.  A parts
integration of Eq. (3) casts the φ derivative from M onto f.  Employing the quasilinear
Vlasov equation for f~, Ω∂ f~/∂φ = ∇ v⋅<a1f1>, where the acceleration a = (Ze/m)E1 +
(Ze/mc)v×B1 and Ω = ZeB/mc, we obtain  after some algebra

Πosc =   m
4Ω∫d3v f1 


 
1

4(a*v×b  +  v  a*×b)  + 
3
4(a||*v×b  +  v| |  a*×b  ) + tr. + cc. (4)

where + tr. indicates the transpose of the preceding expression.  Of particular interest is

Πxy = 
m

8Ω
 ∫d3v f1 (vyay* − vxax*) + cc. (5)

Equation (4) is the desired general result.  Two subsidiary limits are of interest.
In the electrostatic limit  a → ZeE/m, and a may be pulled outside the velocity integral.
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This is also the case in the electromagnetic fluid limit, where kv/ω << 1 renders the
v×B1 terms in a negligible.  Thus, in either case we have

Πosc =   mn

Ω
 <(a⊥ u×b + u⊥  a×b)/4  +  (a|| u×b + u|| a×b )> + tr. (6)

or for Πxy, expressing the result in terms of the linearized current

Πxy = 
1

8Ω
 (JyEy* − JxEx*) + cc. (7)

In the fluid limit, where a ⊥  = ∂u ⊥ /∂ t + Ω ×u , it follows that Π xy =
mn<uxuy> and the total PF of Eq. (2) vanishes, i.e. the Lorentz and fluid pressure
tensor terms cancel identically. However, a nonzero result is possible when finite
gyroradius corrections are important, as considered next.

APPLICATION TO THE IBW

For specificity, we consider the case of an electrostatic IBW with non-
dissipative ions (i.e. sufficiently far from cyclotron resonance).  The radial gradient
required for a net force is taken to arise from other physics, e.g. electron dissipation.
Under these conditions, χ is Hermitian, and Eq. (7) reduces to

Πxy = − 
ωχi×kxky|Φ|2

8πΩi
(8)

where Φ is the electrostatic potential and the components of χ are defined by Px = χ1Ex
+ iχ×Ey, Py = χ2Ey − iχ×Ex, and are well known in terms of standard Bessel function
sums [15].  The net PF from Eq. (2) is the sum of the kinetic pressure and the Lorentz
force terms,

Fy = 
1
8π kxky∂x|Φ|2 

 


 
ω

Ωi
 χ i×  −  χ i 1 . (9)

We note that kxky ≠ 0 is a necessary condition for a non-vanishing poloidal force in the
electrostatic limit considered here.

It is interesting to compare the result of our complete kinetic calculation, Eq. (8)
to an ad hoc generalization of the fluid result Πxy = mn<uxuy> = m/(Z2e2n)<JxJy>
obtained by employing the kinetic Bessel expressions for Jx and Jy.  This procedure
leads to

Π
^

xy = 
ω2(χi12−χi×2)kxky|Φ|2

8πωpi2
. (10)

Shown in Fig. 1 for the case ω/Ωi = 2.1, is the total normalized PF driving
sheared flow, the individual contributions of the kinetic pressure and the Lorentz force
terms, and the PF as calculated using the ad hoc pressure tensor of Eq. (10).  Note the
cancellation of Lorentz and kinetic pressure terms for k⊥ ρi → 0.  The ad hoc fluid
result is qualitatively valid for k⊥ ρi << 1, tends to be an overestimate for k⊥ ρi ~ 1 and
ω → nΩi, and can have the wrong sign.  Note from Eq. (9) that the sign of Fy is odd in
ω−nΩi due to the linear dependence on χ.
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Figure 1.   Total normalized Fy  

(solid) and individual terms: Lorentz 

(short dashed) and kinetic pressure 

(long dashed).  Also shown is the total 

fluid Fy obtained using Eq. (10).  Fy  

is normalized to Fy0, the Lorentz term 

for k⊥ ρ = 0.
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CONCLUSIONS

A systematic formulation of the ponderomotive force on a fluid element due to
electromagnetic waves in hot kinetic plasmas describable within the eikonal
approximation has been presented.  The results are expressible in terms of linearized
moments of the perturbed distribution function, viz. the linearized current density and
pressure.  Cancellations between the Lorentz force terms and the quasilinear kinetic
pressure term have been exhibited analytically.  Numerical calculations, shown in Fig.
1, indicate that a correct representation of the kinetic pressure is important to describe
the rf forcing of sheared flows for IBWs with k⊥ ρi >~ 0.2. These results are in
qualitative agreement with the full wave, k⊥ ρi < 1 numerical results of Ref. 6.
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