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Abstract

The nonlinea forces generated by locdized rf absorption rea a resonance layer
can be employed to drive flows in atokamak plasma. The present paper extends previous
work to enable i) an evaluation d locdized (in radius) pooidal and toroidal forces caused
by rf absorption, ii) arigorous cdculation d the resulting poloidal and toroidal flow rates
in the presence of damping due to pasma viscosity and a phenomenoogicd radial
diffusion d momentum, and iii) implicit treament of ambipolarity issues in the presence
of rf-generated forces. A rigorous result for the stealy state poloidal flow that results
from balancing plasma viscosity with the rf forces is obtained. Numericd results are
presented for the cae of ion Bernstein wave (IBW) interadion within a narrow resonant
ion-cyclotron layer where the wave asorption and rf forces ocaur.

PACS: 52.50Qt, 52.35Mw, 52.30-q, 52.55Fa



I. Introduction

The global resporse of the badkground pasma to applied rf may be fully
charaderized by the following quantities. the rf heaing on ead spedes, the three
comporents of rf force, the driven parallel current, and the rf-induced fluxes of density
and energy. These terms can be incorporated into the global equations for energy, density,
poloidal and toroida flows, Ohm’s law, and the equili brium equations for the rf-induced
flux surface distortion. Heaing and current drive have long been the subjed of
investigations and there has been some work on rf-induced fluxes.l Here, we ded
primarily with the question d how the rf-induced forces modify the badkgroundflows.

Becaise sufficiently large rf-driven sheaed flows can in principle suppress
turbulence? it has been proposed that rf power may be useful as an external control for
triggering tokamak plasma transitions into high-confinement regimes. Indeal there is
intriguing experimental evidence for this in ion Bernstein wave (IBW) experiments on a
variety of tokamaks.3-7. Althouh the power was not sufficient to cause turbulence
suppresson in the IBW experiments on the Tokamak Fusion Test Reador8 (TFTR), a
measurement of the driven flows was possble. Understanding these experimental results
remains a challenge for theory and modeling. In addition to the pradicd possbility of
controlling turbulence rf waves may provide a means of doing experiments on the
physics of sheaed flow generation that would be of interest to the turbulence @mmunity.

There is a rapidly growing literature on the theory and computation d norlinea
rf-induwced flows. 9-17 The present paper follows most closely as an extension o work
aong the lines of Refs. 11-16 which, except for Ref. 12, treded the poloidal flows driven
by ponderomotive-like forces in a slab geometry. Viscous damping of the flows was
included heuristicdly in these cdculations. The formalism for cdculating the locd rf-
indwed forces on the plasmais relatively well developed in these and ather papers,18-20
and in references within them.  In the present cdculations, the rf force results are
employed in the form given in Ref. 11. The goal of the present paper is to incorporate
these rf cdculations into a maaoscopic description d a toroidal plasma. Two urique
fedures of norlinea rf-induced forces are that they can occur in a extremely narrow
resonance layer, and that they can ether inpu net momentum or simply redistribute
momentum in a onservative way.

We do nd consider the problem of rotation diven by energetic tail ions, which
can absorb wave momentum and transport it by large orbit excursions and dred loss



This problem has been treaed by other authors.21-25 Other rf-related medhanisms have
also been proposed.26 Instead, the medhanism for rotation considered here is closely
related to the locd ponderomotive force of the waves, suitably generalized to include the
important concept of an rf-induced presaure tensor (a kind d rf-induced gyro-viscosity)
and dsgpation through cyclotron and Landau damping.

In the heuristic treaments of viscous flow damping referred to abowe, the
poloidal force Fg and flow ug are cnsidered to berelated by

PYeUp = Fy 1)

where p is the massdensity and yg is a damping coefficient. Here, we work in orthogonal
flux coordinates (Y, 6, {) correspondng to the radial, pdoidal and toroidal diredions
respedively. Severa objedions may be made to Eq. (1). Most obviously, ore needs to
suppy the damping rate yg from a separate cdculation. Moreover, examining the
poloidal comporent of the steady-state momentum equation onwhich Eg. (1) is based
leadsto ather concerns. The full equationis
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where I1 is the viscosity tensor and aher symbals (to be defined preasely later) have
their usual meanings. The damping rate yg arises from I, bu the heuristic result does not
retain any rf-driven ambipolar current Jy, or possble rf-induced pdoidal variations of
presaure. These objedions can be drcumvented by employing a proper flux surface
average of the parallel comporent instead of the poloidal comporent (as will be dore
subsequently), bu the way in which the driving term for pooidal flows is transformed
from Fto Fg isimportant to uncerstand.

The goal of this paper is to develop a formalism to clarify these isuues and to
apply the formalism to cdculate the flows induced by the asorption d an IBW. The
formalism will include viscous flow damping, radia diffusion, and ambipdarity
considerations in the presence of rf. The latter have previously been considered for the
slab geometry case by a more dired approach.14 Some badgroundfor the treament of
the toroidal aspeds of the present cdculation may be foundin Refs.17 and 27-29.

The plan o our paper isasfollows. In Secll we develop the basic formulation d
toroidal and pdoidal flows and explore severa limiti ng cases of interest for the nonlinea
rf-induces forces. The sedion ends with an explicit representation for the rf forces.
Sec Il gives sample numericd results for the pdoida and toroidal flows driven by an



IBW that is absorbed in an ion cyclotron resonance layer. An approximate analyticd
scding of the resulting flowsis aso oltained. A summary of our main resultsis given in
Sec V.

[l. Derivation

A. Toroidal formulation

We begin with the spedes simmed momentum equation for the evolution d the
badkground pasma

%(pu)+Dp+D[l]‘I:F+%J><B 3

where p = n(T;+T,) is the presaure, I1 is the tracdess plasma viscosity tensor (not to be
confused with the rf presaure tensorll that contributes to F), p = nm;, and F is the total
nonlinea force of the rf waves on the plasma (including the @ntributions of the rf
presaure tensor and the time-averaged rf Lorentz force). The rf force F will be given

explicitly in Sec. Il D.

The steady state toroidal and parallel momentum equations are
Re; (M N = RF +1J¢RBG 4
C

B [ [T =BF||—BD”p (5)

where R is the mgjor radius and axisymmetry has been employed. When a flux surface
average [seeEgs. (9) and (10)] is performed onthe éove ejuations, it can be shown that
many of the terms are annihil ated:

<J¢RBG> = <BD”p> =0 (63)

where we have used LJ[J = 0, and nde that for any quantity Q, <BL};Q> =0. When orly
lowest order neoclasscd processes are omnsidered, we dso have
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where N is a symmetric tensor. Thus, we ae motivated to introduce aphenomenologicd
diffuson d momentum to balancethe forceterm in the toroidal equation. For the cae of
noninea rf-induced flows considered here, where the force is typicdly locdized in a



narrow rf resonant layer, we introduce aphenomenadogicd diffusion d momentum in
bath the toroidal and perallel equations. This allows treament of the cae where the rf
depaosition layer (forcing layer) is sufficiently narrow that diffusion can daminate the
viscosity in the paralel equation. As we shall see diffusion impads the cnceptual
understanding of the flow drive. The flux-surface &eraged equations including diffusion
are:

D a 0
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where J = d(X, Yy, 2)/0(, 6, () is the Jambian and the flux surface aerage for any
quantity Q isdefined by

Q >—1J'C21]Z_[J’d9JQ ©)
U:IdeJ. (120

Next, we employ the flow representation in an axisymmetric torus as
u=K(y)B +G(V)Re; (11

This form insures severa important properties of the flow, including incompresshility
(which requires K to be aflux function) the asence of differential rotation within a flux
surface (which requires G to be aflux function), and hence no “winding up’ of the B-
field.30

Theradial forcebalance euation gives

G= —c%ai’+ 1opd, ¢ Fy (12)
oy Zenoy 7 Zen RBg
This equation shows that there ae threeways the rf cen affed E, [J ad/oy: (i) by
the toroidal rotation it drives, i.e. through G (the relationship of G to the rf fieldsis given
later); (ii) by the p;j(Y) heaing profile; and (iii) diredly through the radial ponderomotive
force term Fiw-” Often Figy is snal compared with the other terms in the radial force
balance euation, bu if nat, the rf can also drive flux surfacedistortions.31




B. Flowsin thelimit of rapidly varying K and G

Asauming the radia variation d K and G is much more rapid (i.e. on shorter
scdes) than B, v and p, we can introduce alocd radial variable x in the vicinity of the rf
resonancelayer with

<R285>dx2 = dy? 13)
and rewrite the toroidal and paral el equations as

—DpRBZK"—Dp<R2>XG" = (RF ) (14)

- Dp<82>x K" - DpRB;G" + 3n0K<(D||B)2> = (BF) (15)

where' = d/dx, andfor any quantity Q,

_(R*8fo)
Q) = W
Although we shall omit the details, we have used the fad that in the Pfirsch-

Schitter limit (strong colli sionality)

(BD]]EI]'I>:3r]0K<(D”B)2> )

(16)

where ng = 0.96 plv;; isthe dasdcd pardlel ion viscosity. We take the Pfirsch-Schltter
limit in this sdionin order to have a oncrete and tradable expresson that ill ustrates the
corred properties of I1; the formulation presented here is general and rot restricted to this
collisional regime. Thefad that only K, na G, appeas onthe rhs of Eq. (17) implies (as
is well known) that paralel viscosity damps poloida rotation, bu nat purely toroidal
rotation.

Equations (14) and (15) can be solved for K and G to yield

0o _RBEO.L 3 _ () RBe(RR)
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A casual examination d Eq. (15) in the limit D — 0 might suggest that poloidal
rotation (propational to K) is driven by the parallel comporent of the force However,
when the D - O limit is taken in Eq. (18) it is evident that the toroidal force is aso
present, and that the combination o forces appeaing on the rhs of Eq. (18) is closely
related to the poloidal force (and becomes it if the flux surface aerages are ignored). It
will be noted that when D = 0, Eq. (14) isill-posed when Fz # 0 urlessDG"is retained.
ThusDG" remainsfinitein Eq. (15) and canna be negleded.

The main pant hereis that retaining diffusionin the parallel momentum equation
is important when considering the steady state flows. In the literature, diffusion is
normally retained in the toroida equation kecaise there is no toroidal damping of flows.
It istempting, but incorred, to drop dffusion in the steady state parall el equation when it
is snaller than the damping term. Our analysis retaining D shows that the D = 0 case is
singular because then G - . Furthermore, when D is retained, the pooidal flow K is
sean to be driven by a oombination d flux surfaced averaged forces that resembles Fg, as
in the heuristic model, nat i Evidently, the combination d terms that appeas onthe rhs
of Eq. (18) isjust what is required to acourt for the Jy, and Oip termsin Eq. (2).

C. Flowsin thecircular flux surface limit

1. Basic equaions

In this sedion, we return to Egs. (7) and (8) (before the assumption o rapid
variations of K and G was made) and consider the arcular flux surfacelimit. Expanding
for small € = r/Rywith R = Ry (1 + € cos 8) and working through order €2 we obtain

25 oH . 3€?
DDrg)KI(qJ)+pGROE.+T =~(RF) (20)
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where Drzisthe usua cylindricd Lapladan operator, p, K, G, g, and I({) = RB; are flux
functions, b = B/B, bg=¢/q, Iy =1 - €2/02 and it is useful to nae that for any quantity
Q, <Q> = [do/2mt (1 + € cosB)Q, <BZ> = (I/Rp)2(1 + €2/g2 + €2/2) and <R2> = Ry2(1
+ 362/2). Defining the auxili ary quantities J,K and " by

J=pGRy(L+3e?/2) +pKBzq = puz (22)



K =pKB =pug/bg (23)

MKB=<BIIM > 24
Egs. (20) and (21) may be combined into the form
DUZ(J) =-F (25)
DO2[b2K 2\ FR - _
Z[bgK (1+29%)] - TK = -bgFg (26)

where RFz> = RoFqz, <BFjp> = 1(Y) Fo)f Ro, bgFog = Foj| = Foz and fenceforth in this
sedionwe abreviate I(P)/Rg = Bz = B where only lowest order informationis required;
and we dso abbreviate Foz, Fog and Fo) by Fz, Fg and Fj respedively.

Equations (25) and (26) are the principal results of this subsedion. To make
analogy with Eq. (1), we ca define
Yo =T /1 (27)
2. Viscous damping limit: small D

We first consider the limit of small D such that D/AZ <<vyg or A <<A, where A is
the charaderistic radial scde length of the rf forces Fg and F| (i.e. the width of rf
absorption layer) and

_fba+29%) g
A v [ (28)

is the length scde & which dffusion and damping compete. In this limit the diffusion
term may be negleded in Eq. (26) and the result for the pdoidal flow has the form of the
heuristic result of Eq. (1) with the dfedive damping rate given by
2
Yo =_—
2R Vi

(29)

in the Pfirsch-SchlUter regime.

It is important to nde that yg is not the rate & which an initialized flow damps in
time. We can remver the standard result for the time-dependent damping rate32 by
reinstating the time derivatives and doppng the forcing terms to oltain (after some
algebra)
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Yi = = : (30)
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The extra fador (1 + 2¢?), familiar from the MHD analysis of slowly growing
modes, is an inertial term resulting from parall el flows that does not enter the steady state
(forced) D = 0 results.

3. Diffusionlimit: larger D

Typicdly, the rf-layer width is narrow and the cdculation must be dore in the
diffusion limit D/A2 >> yg. First we cnsider the cae A << A <<r,wherer,isthe minor
radius. In this limit the pooidal flow islocdized, bu due to dffusion the flow layer is
broader than the rf absorption layer. The analysis proceeals by approximating the
locdized forces by a delta-function at the rf absorption layer. The equation for K has the
form

aK"-bK =S (31)

where the exad definitions of a, b,and S are evident by comparison with EqQ. (26) and are
of order

a=B3 (32)
2.2
p= -0 (33
2Dpg°R
_ BeFp
S=50(X —Xq) = ——+> 34
SHd(X = Xg) Do (39

In the force-freeregion, the solutionfor K is
K — Koei(X_Xo)/)\ (35)

where A = (a/b)V2. The jump condtion aaossxg correspondng to Eq. (31) is

oK O

a = (dxS 36

Ixg =/ (39
which yields

Ko =-2 (dxS 3

| (37)



This result yields a pe&k value for K that is snaler than in the damping-
dominated limit (where K = =S/b) by the fador A/2\ where A is the rf depasition layer
width. The size of maximum poloidal flow scdes like ug O 1/D. The poloidal flow layer
width A 0 DY2 s dso larger in the present limit (A >> A) than in the damping-dominated
case (A << A) so the shea in the pdoidal flow isfurther reduced by comparison.

The toroida flow is aways diffusion daninated since there is no toroida
damping in ou model. Thus, the present limit |eadsto global toroidal flows.

4. Srong dffusion limit

The strong diffusion limit is defined by A << A ~ r,. In this case, bah the poloidal
and toroidal flows are global, and the diffusion scde includes the entire minor radius.
Net momentum input Jdx Fg and [dx F; drives net flows, but net flows are dso possble
with no dred rf momentum inpu. This fad has been nded in the mntext of rotation
driven by energetic tail ions.22 Here, it may be seen by considering a. “dipale” forcing
term, eg. Fz or Fg 0 &'(X-Xg). As in Ref. 22, the boundxry condtions or some other
symmetry-bregking mechanism are aiticd to the result. Hereit could be simply diff erent
boundry condtions at r = 0 and r = r,, o different D on either side of the shea-flow
layer. The latter might arise, for example, as a natural consequence of the dfed of
sheaed flows on the turbulence

D. Explicit representation of rf forces

To proced further, an explicit representation d the rf forces is required. A
genera elkonal result has been oltained in Ref. 11 and will be summarized here. The
result isvalid for arbitrary eledromagnetic wavesin a hot plasma.

The norinea forcedensity of rf waves onafluid element is given by

—_ 1 * — * —
F—ET[(DE)DP OPE*) +cc)- O (38)

where P = x[E, X is the dieledric susceptibility tensor and N is the rf presaure tensor.
The off-diagonal terms of ¢ are sufficient to describe the momentum redistribution
forces due to ha plasma ion gyroradius effeds. It was srown!l that these terms can be
expressed in terms of the rf-lineaized dstribution functionfq
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where tr is the transpose and a = Ze/m(E4 + vxB4/C) is the lineaized acceeration d the
particles in the wave fields. Equations (38) and (39) are gpropriate for studying the rf-
induced flows from afull 2D toroidal wave wde. Such astudy will be deferred to alater
paper. For present purposes, several charaderistic feaures of rf-induced flows can be
illustrated by taking the rf-fields from an appropriately rotated 1D slab model locd to the
rf resonance layer. The resulting forces in the flux surface for a cae with rf field
gradientsin the x diredion are

k O 0 Oi 1
F y
= (J —Jx ) (40)
y 4[](E (D) E‘T Py yEy Ex EI cc 40
F,=-% EFD) -— IJE + J,E, +J,E, )+ cc 41
I ( ) % (z y y z) (41)

wheree, = ey, e,=bande, =b x ey .

There ae two clases of terms which contribute to the forces. The terms
propationa to the comporents of k(E*[J) correspond to dred absorption d wave
momentum k/w by the plasma for eat “quantum” of absorbed wave energy. The
remaining terms, which are perfed derivatives in x, correspond to a mnservative
redistribution d momentum.

Given the field line geometry, the 8 and { comporents of the force neeled for the
flow cdculations can be determined by projedion.

[ll. An example of IBW driven flows

The IBW-driven flows observed onTFTRS8 provide awell-diagnosed and modeled
casel533 onwhich to apply the present formalism. Here we mnsider an IBW incident on
the w = 5Q resonance, with parametersk, =0 and k, =5 ml. Sincethe resonancelayer
is narrow compared to the plasma aosssedion, the wave fields are cmomputed by a one-
dimensional ray tradng analysis!2 which employs the Bessl and Z-functionion resporse
in the resonance layer. The results given here anploy a simple single resonance model
for apure T plasmain the dedrostatic limit for purposes of ill ustration. More detail ed
studies of this problem in a DT plasma with all the Bessl functions aams and full field
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polarization!> yield an essentialy similar result for the wave fields, and comparisons
have shown that the ekonal and full spedral width cdculations of the rf forces are
equivalent for this case.34

A. Numerical results

Figure 1 shows the dedric field E, ~ 100 V/cm, Poynting flux and absorbed
power for a cae with total power absorption ~ 400 RV. The wave enters the figure from
the right. The dedric field undergoes a large number oscillations between x =5 and 2
cm before its amplitude beames negligible, justifying the eékonal limit. The w = 5Q+
resonanceislocaed at x = 0.

Figures 2 and 3 show the norinea forces and resulting toroidal and pdoidal
flows obtained by solving Egs. (25) and (26) for the parameters yg = 10/s and D = 200
cm?/s. The poloidal flow equationis sngular on axis when D andy are radiall y constant;
therefore, in the mde the form of the equations nea the ais is regularized to give finite
flows. Note, in Fig. 2b, the bipdar nature of Fg and the diffusive broadening of ug
relative to Fg. The pooidal flow isin the diffusion limit. The bipdar structure is due to
the faat that ky, = 0 implies no ret poloidal momentum input for this case. The peek value
of ug = 2 km/s (for this assumed D) is of the same order as that measured experimentally
in TFTR8 and the profile shape shows quditative agreement with the experiment.
However, we stressthat no attempt at detail ed modeling has been made here. Whileyg is
typicd of the banana regime value that is expeded to apply under these condtions, the
corred value for the momentum diffusion coefficient D in this experiment is not known.
The cdculated toroida flow velocity profile for this exampleis= 30 km/satr =0 andis
approximately constant out to the resonancelayer (r = 46 cm) after which it deca/s dowly
tozeroatr =ry=100cm, as srownin Fig. 3. It isglobal, and diven primarily by the net
toroidal momentum of the waves, which were taken to have an asymmetric spedrum with
k,~5m1

B. Analytical scaling of flows (diffusive limit)

The poloidal flow for this exampleis consistent with the estimate
Ug = Py AIAG2QDpV (42
where V = 412RrA isthe relevant volume for locdized flows. Interms of experimental

inpus we have
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Ug~0.4P; /g2RrBDnyg (43

where the units are ug(km/s), P{(MW), R(m), r(m), B(T), D(m2/s), and n(1029/m3).
For the toroidal flow, the estimateis
Uz = Py kzr2/wDpV (44)
where the relevant volume for global toroidal flowsisnow V = 212Rr2. Thisyields

UZ~48Prf kZ/RfDnzolJ. (45)

with the same units as for Eq. (43) and additionally kz(m'l), theion massmy/m; = p(amu)
and frequency f(MHZz).

IV. Summary

In this paper we have developed a formulation o rf-driven flows in toroidal
geometry which implicitly includes rf ambipdarity effeds. Threemedanisms have been
identified by which rf affeds the radial eledric field E, and the flows [see Eq. (12)]:
through heding (p;), explicit momentum inpu or redistribution (flow drive), and non
linea radial forces. In this paper we have mncentrated onthe flow drive mecdhanism.

It was own that retaining diffusion in the parallel momentum equation is
criticd in the derivation, and results in ug being driven by Fg [exadly in the arcular
plasma limit of Eq. (26), and approximately in the general case of Eq. (18)] as expeded
from a heuristic treament. In arigorous cdculation d the damping of pooidal flows by
plasma viscosity in the Pfirsch-Schitter regime, it was foundthat yg given by Eq. (29)
differs by the fador (1+2c2) from the damping rate that appeas in the time-dependent
problem. Several diffusive regimes were identified for the poloidal flows giving rise to
various degrees of pooidal flow locdization. Toroidal flows are dways global, even
though the rf-driving terms are highly locdized. The main theoreticd results are
contained in Egs. (18) and (19) for evaluating the flows in a narrow rf layer in general
geometry, and Egs. (25) and (26) for global or locd flows in the drcular flux surface
limit.

In a sample numericd cdculation d IBW-driven flows in a TFTR-like plasma,
the flows appea to be of a significant size for this dired launch IBW case. The results
appea to agree qualitatively with experimental measurements although no attempt at
detailed modeling was made. Analyticd expressons were obtained in Egs. (42) — (45)
which give the scding of the expeded flows driven by IBW waves in the diffusive limit.

13



In conclusion, this paper together with ealier work provides the theoreticd tods
nealed to acarrately compute the poloidal and toroidal flows resulting from a given rf
scenario. This $roud be useful in panning future IBW experiments and in carrying out
detail ed modeling of the results.
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Figure captions

1. Therffieldsfor a cae with strong IBW absorption at the gyclotron resonance layer:

a) rf wave field E,(x) (V/cm); b) absorbed power P(x) (W/cm3) (solid) and Poynting
flux S(x) (W/cm?2) (dashed). The waveisincident from the right, and the resonanceis
ax=0.

2. Flow velocity and forcein the vicinity of the rf absorption layer: @) toroidal, b)
poloidal. Theforcesareshown in arbitrary units. In a), the zero line for the toroidal
forceisindicaed by adashed haizontal line.

3. Radia profiles of the flows over the entire plasma minor radius: @) toroidal and b

poloidal.
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