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1 Introduction

This test was devised to verify the ability of the 2DX eigenvalue code to correctly
solve a simple fluid model relevant to edge turbulence in tokamaks. Since the
functionality of the 2DX code depends on both the source code itself and the
input file defining the system of equations to solve (structure file), this test
demonstrates both. Since a similar test was performed on an earlier version of
2DX, this verifies that the current version retains this functionality. Moreover,
since the structure file for this test represents a subset of a more general 6-field
model, many of the terms in that test are also verified.

This test compares 2DX results to BOUT simulations, and to approximate
analytic solutions in the limits of large and small binormal wavenumber.

2 Description

2.1 Code structure

The 2DX code is a highly flexible eigenvalue solver designed for problems rel-
evant to edge physics in toroidal plasma devices. Its flexibility stems from the
use of a specialized input file containing instructions on how to set up a partic-
ular set of equations. Because of this, the 2DX code permits model equations
to be changed without altering its source code. The drawback to this approach
is that any change to the structure file represents a potential source of error,
necessitating re-verification. This problem is offset by the fact that the source
code remains unchanged, thus testing one structure file builds confidence in
the underlying code that interprets the structure file. Also, structure files can
be translated into analytic form, thus allowing the user to verify that the file
contains the equations intended.

The structure file contains two main parts: an elements section, which con-
structs the differential operators and other functions used in a particular set
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of equations, and a formula section, which assembles these into an actual set
of equations. This separation means that elements can be recycled in other
structure files. By testing one structure file, one builds confidence in the ele-
ments used in that file. The main source of error when switching to a different
structure file then is in the formula section, which can be manually verified by
translating into analytic form.

Regardless of the content of the structure file, the 2DX code is fundamentally
a finite-difference eigenvalue solver. As such, it is subject to the limitations of
any code of its type.

2.2 Model equations

For this test we use the following model equations [1]-[3]:

γ∇2
⊥δΦ = +

2B

n
Crδp−

B2

n
∂‖∇2

⊥δA (1)

γδn = −δvE · ∇n (2)

−γ∇2
⊥δA = νe∇2

⊥δA− µn∇‖δΦ (3)

where:

δp = (Te + Ti)δn+ n(δTe + δTi) (4)

Cr = b× κ · ∇ = −κgRBp∂x + i(κnkz − κgkψ) (5)

∇2
⊥ = −k2z − B(kψ − i∂xRBp)(1/B)(kψ − iRBp∂x) (6)

∂‖Q = B∇‖(Q/B) (7)

∇‖ = ∂y (8)

δvE · ∇Q = −ikz(RBp∂xQ)

B
δΦ (9)

νe = .51νrn/T
3/2
e (10)

2.3 Boundary conditions

This test case uses phase-shift periodic boundary conditions in the parallel di-
rection, and zero-derivative boundary conditions in the radial direction. The
phase shift in the parallel direction is given by:

ei2πnq (11)
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2.4 Profile setup

The formulas in Eq. 1-3 are normalized to Bohm units. Distances are measured
in units of ρs and time is measured in units of ω−1ci , with ρs and ωci calculated
at reference values of ne, Te, and B. Profiles of ne, Te, and B are provided as
multiples of these reference values. Output eigenvalues are multiplied by ωci.
Resistivity is given by the formula:

νr =
µ

.51σ
(12)

where

σ = 1.96
ωce
νei

(13)

The geometry used is an idealized toroidal annulus with major radius R,
minor radius a, and thickness δa. The density profile is exponential with scale
length Ln, and temperature profiles are flat. Curvature is assumed, and is given
by:

κn =
cos(y)

R
(14)

The function q may be sheared, but shear is set to zero for the test case
given. The value of this constant q is given in Sec. 4.

Parallel derivatives are calculated using the Jacobian factor  = 1/qR.
Toroidal mode number is calculated by n = kza/q0.

3 Analytic results

The solutions to the equation set in Eq. 1-3 can be solved by first assuming that
µ� 1, in which case the equations can be reduced to the form:

∂2yδΦ +
α

γ
(γ20 cos(y)− γ2)δΦ = 0 (15)

where:

α =
q2R2k2z
σ

(16)

γ0 =

√
2

RLn
(17)

For the limit where kz is very large, we can use the approximation cos(y) ≈
1− y2/2 to get a Hermite equation. This results in the approximate solution:
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γ = ωci

(
γ0 −

√
αγ0
8

α

)
(18)

For the limit where kz is very small, a more complicated approximation can
be used. This arises from the ansatz δΦ = einqθ + Aeiθ(nq+1). This yields the
analytic formula:

α2γ40
2γ(1 + 2nq)

= αγ + n2q2 (19)

4 Numerical results

The code was tested by sweeping the variable kz from .001 to 1000 cm and
plotting the fastest growing eigenvalue. The parameters used in this test are
shown in table 1:

a = .75 cm
δa = .3 cm
R = 207.5 cm
Ln = 9.4 cm
Zeff = 32
B = 1 T
ne = 1014cm−3

mi/mp = 2
µ = 104

Ti = 1 eV
Te = 100 eV
lnΛ = 12.4
The results of this test are shown in Fig. 1. The red lines near the ends of

the plot are analytic solutions. The blue dashed line is the asymptotic limit
of the analytic solution for high kz. The green dots are solutions from 2DX,
whereas the black dots are solutions from a previous version of 2DX using a
2-field model. The blue crosses are simulation results from BOUT. In addition,
a table of the raw eigenvalue data is shown in table 2.
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nx 4 ny 16

dx .693242 dy .392699

γ γ(s−1)/4.79× 107 n .5 kz(cm
−1)

µ 104 νr .00131267

q 1.5 kz -.144249 kz(cm
−1)

 .000474896 kψ 0

κn .00711444 cos(y) κg 0

B 1 RBp 1

n0 e−x/65.1647 Te 1

Table 1: Non-dimensional profile functions and parameters used in the resistive

ballooning test case, as a function of the dimensional input kz(cm
−1).

Figure 1: Growth rate vs. kz for the resistive ballooning model. Green dots are

solutions from 2DX, black dots are solutions from 2DX from a 2-field model,

blue crosses are BOUT results, and red lines are analytic results.
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kz(cm
−1) γ(s−1) kz(cm

−1) γ(s−1)

.001 7.65881 1.77283 127813

.00177283 13.7556 3.16228 167064

.00316228 792.258 5.62341 191107

.00562341 3890 10 205355

.01 3812.59 17.7283 213607

.0177283 3880.01 31.6228 218291

.0316228 4026.53 56.2341 220651

.0562341 4431.82 100 221637

.1 5429.65 177.283 222045

.177283 7606.79 316.228 222220

.316228 12267.2 562.341 222284

.562341 24588.4 1000 222305

1 80744.4

Table 2: Growth rate vs. kz for the resistive ballooning model.


