
Appendix F:  Kink Benchmark  1   

  
 

Ideal kink mode benchmark 

J. R. Myra, D. A. Baver 

Lodestar Research Corp., 2400 Central Ave. P-5, Boulder, Colorado  80301 

M. V. Umansky  

Lawrence Livermore National Laboratory, Livermore, CA 94550 

 

A. Introduction 
This test was devised to verify the ability of the 2DX eigenvalue code to correctly 

solve a fluid model relevant to Edge Localized Mode (ELM) physics in tokamaks, viz. 
the current-driven ideal kink mode.  Kink/peeling mode instability physics, in 
combination with pressure gradient-driven instability physics is believed to be 
responsible for Type I ELM onset.1   Since the functionality of the 2DX code depends on 
both the source code itself and the input file defining the system of equations to solve 
(structure file), this test demonstrates both.  Similar tests have been performed using 
other physics models. Moreover, since the structure file for these tests represents a subset 
of a more general 6-field model, many of the terms in that test are also verified.  A more 
detailed description of the 2DX code can be found in Ref. 2. 

The present test compares 2DX results to asymptotic analytic results based on a 
sharp boundary solution3 of the eigenvalue problem, with some additional analytic 
embellishments to Ref. 3 described here.  In particular, a strict sharp boundary limit is 
unsuitable as a benchmark test case because it cannot be resolved numerically with a 
finite grid.  Thus, we extend the analytical result to account for small departures from the 
strict sharp boundary limit. 

B. Ideal kink mode model 
To benchmark the current gradient drive term in the ideal MHD model, we solve 

the equation 
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This equation may be obtained from the primitive six-field eigenvalue equations (see e.g. 
Ref. 2) by combining the equations for vorticity and Ohm-Ampere’s law in the ideal 
MHD limit.  Here, we work in Bohm-normalized variables with times normalized to 
1/i, lengths normalized to a reference sound gyroradius sr, temperature and 
electrostatic potential /e to a reference value of electron temperature Ter, and density to 
a reference value of density ner  In Eq. (1),  = mi/me, 2
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|| Q = B|| (B1Q), r  = RBp  / , kb is the binormal component of the perpendicular 
wavenumber; other symbols have their usual meanings. 

For the benchmark test set we take B = n = 1, and since there is no variation in the 
equilibrium along B, for analytical work |||| ik  (in the code, parallel variation is solved 
for numerically). 
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The current profile is taken as a sharply varying step function in the next section, while 
corrections for smoothed profiles are given in the Appendix.  The analytical solution and 
benchmark test is carried out in the cylindrical tokamak model. 

B. Analytical solution 
For a strict sharp boundary J|| profile, (J|| = J||0 to the left, and 0 to the right) with 

step at r = a, we solve the equation 
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in each region to obtain 
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Then integrate Eq. (2) across the step to get the jump condition 
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where [J||] = J||0.   The dispersion relation is obtained by employing Eq. (4) in Eq. (5) 
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In dimensional units 
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where va is the Alfvén velocity.  For the sharp boundary equilibrium model (making J|| 
consistent with q) 
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where av/qRˆ  , qRkk̂ ||||  .  Maximum growth is at 2/1k̂||   and is 2/iˆ  . This 
implies  
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This result is similar to that obtained in Ref. 3, but the inertial term is twice as large here 
because we have assumed a constant density profile (rather than taking it as a step 
function also.) 

The above can be generalized to include a finite wall position, and to correct for a 
sharp but finite-width tanh function instead of a strict step function.  The generalized 
dispersion relation takes the form 

 0k̂Wk̂ˆ ||
2
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where W is derived in the Appendix. 

C. Numerical solution and comparison 
We solve Eq. (1) with 2DX on a nx  ny = 511128 grid. Dimensionless input 

parameters are  = 3672,  08449.02
er  , 1/(qR) = 1.8758104 and the reference values 

employed for dimensional results are i = 9.58107/s, a = va/(qR) = 3.1657105/s.  The 
current profile is taken as  
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where zw = 0.002 and J||0 is given by Eq. (8). 
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Fig. 1 Growth rate (105/s) vs. normalized k|| for 2DX (blue dots) 
and for the solution of Eq. (10) retaining finite step width 
corrections for the current gradient.  Finite wall position 
corrections are negligible. 
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Because of the high resolution, these runs take several hours each, although the 
resolution of the rather sharp current gradient is still not superb.  For these runs, W = 
0.962 from the finite width corrections, while the finite wall positions are negligible 
(hence the value of kb or toroidal mode number n = 20 that was employed drops out.)  
Results are shown in Fig. 1. 

In Fig. 1, cases with k|| 
qR < 0.5 are awkward numerically since the fundamental 

parallel mode in the box is not usually the fastest growing mode.  In these cases 2DX will 
report the fastest mode to be a poorly resolved harmonic.  The desired mode can be found 
by picking through the spectrum, but this has not been done except for the case with k|| 

qR < 0.4.  There is no reason to suspect problems in benchmarking these cases, it is just 
inconvenient. 

Appendix: Corrections for finite wall position and finite width step 
For conducting wall BCs, ( = 0) at finite locations on each side of the step, z = 

zw, where z = r – a is a shifted radial variable centered at the step, we can modify Eqs. 
(3) and (4) as follows 
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So in the dispersion relation, Eq. (7), after dividing through, the drive term J||0 is 
multiplied by tanh(kbzw).  Similarly, one can derive the correction for insulating BCs, 
r(zw) = 0.  In summary we find 
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We can also derive corrections for a finite current profile width.  The idea is to do 

a perturbative expansion in the width zm where the current profile is given by 
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In leading order, we take the solution to be that of the step-function model (for 
simplicity, the infinite wall case), given by Eq. (4).  Then in the vicinity of zm for kbzm 
<< 1 we can take  = 1 and an equation accurate through next order  is 
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where 
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Integrating from z = 0 (noting even parity of ), and dropping  kbzm contributions gives 
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Next we match the logarithmic derivatives at a point z1 such that 
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i.e. z1 is outside the current profile gradient, but inside the region where kbzm << 1 holds.  
The matching condition is 
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After cleaning up, this reduces to 
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where the J||0z1 term in Eq. (11) was dropped since it is small in kbz1 relative to the other 
J||0 term.  This correction enters in the form shown in Eq. (10) and gives 
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or 

 2lnzk1W mb  (A14) 
If both finite wall and finite width corrections need to be applied, and they are 

both small corrections, the W’s can be multiplied together. 
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