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A. Introduction 
This test was devised to verify the ability of the 2DX eigenvalue code to correctly 

solve a fluid model relevant to edge turbulence in tokamaks, viz. the parallel Kelvin 
Helmholtz mode.1,2  Since the functionality of the 2DX code depends on both the source 
code itself and the input file defining the system of equations to solve (structure file), this 
test demonstrates both. Similar tests have been performed using other physics models. 
Moreover, since the structure file for these tests represents a subset of a more general 6-
field model, many of the terms in that test are also verified.  A more detailed description 
of the 2DX code can be found in Ref. 3. 

The present test compares 2DX results to exact semi-analytic results based on a 
local limit of the eigenvalue problem.  The semi-analytic results are equivalent to the 
numerical solution of a polynomial dispersion relation, i.e. they are obtained without 
discretization. 

B. Parallel Kelvin-Helmholtz 4-field model 
A 4-field model containing the physics of the parallel Kelvin-Helmholtz (pKH) 

mode is1,2 
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where we work in Bohm-normalized variables with times normalized to 1/i, lengths 
normalized to s, temperature and electrostatic potential /e to a reference value of Te, 
and density to a reference value of ne. Here  = mi/me, and for any Q, || Q = B|| 
(B1Q), r  = RBp  / , kb is the binormal component of the perpendicular 
wavenumber; other symbols have their usual meanings.  In particular , n, u and J 
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are respectively the perturbations of electrostatic potential, density, parallel velocity and 
parallel current.  See Ref. 3 for a complete description of the six-field model. 

In the local limit, and choosing local values for i, s, Te and ne, we set n = B = 
Te = 1, Ti = , and working in the frame u = 0, these equations reduce to 
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We can eliminate the n term from vorticity to obtain 
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In Bohm dimensionless units let nbrbe L/k)n(k  , s = k||, u = 
kb/Lu, )n(k rbi  = kb/Ln. This yields the following set of local equations 
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We note parenthetically, that the parallel KH mode exists in a much simpler 2-
field model obtained from the above by dropping the vorticity and J equations, 
assuming Maxwell-Boltzmann electrons, dropping the J term in continuity, and the || 
term in the u equation. This simpler model yields instability for Lu < Ln, but has the 
difficulty that in the plane where both kb and k|| vary to arbitrarily large values, the 
growth rate increases without bound.  Thus the simpler 2-field is neither suitable for 
benchmarking tests or physics exploration with a discretized code.  (If the 2-field model 
were used in a discretized code, the simulations would be dominated by grid-scale modes 
regardless of the resolution employed.) The 4-field model with finite || solves this 
problem. 
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C. Results in the local limit 
We choose parameters from the C-Mod QC-mode case, except for Lu the gradient 

scale length of u, which is varied from strongly unstable (Lu = 5) to stable (Lu = ). The 
base case parameters in dimensionless Bohm units are Ln = 12.7,  = Ti/Te = 1, e = 0.34, 
 = 3600, ii = 0.001, || = 2000.  The model is that of Eqs. (10) – (13).  The equations 
were solved using Mathematica to generate local results for comparison with 2DX 
numerical results. 

 

Fig. 1 Growth rate contours for the parallel KH and DW 
instabilities, for base case parameters (left) and with 1/Lu = 0 
(right).  The range of k||R is 40.  

 

 

 

Fig. 2 Same comparison as Fig. 1 except that now || = 400. 
Base case Lu (left) and 1/Lu = 0 (right). 
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Results for the base case parameters are shown in Fig. 1.  Because of the 
relatively large (but experimentally realistic) value of ||, the parallel KH and drift wave 
(DW) instabilities merge, so the effect of the pKH drive Lu is only to slightly broaden the 
instability contours. 

Fig 2. shows the same comparison for the case || = 400.  (We cannot take  || = 0 
because then the spectrum never saturates as k|| increases.) Now there are two distinct 
unstable branches: the high k|| pKH, and the low k|| DW. 

D. The parallel KH  benchmark test 
For a good benchmark test that separates the pKH and DW branches, we choose a 

case with || 5 times smaller than realistic.  The parameter set is: (in dimensionless Bohm 
units) Ln = 12.7,  = Ti/Te = 1, e = 0.34,  = 3600, ii = 0.001, || = 400.  The growth 
rates in dimensional units for the reference i = 1.982108/s are shown in Fig. 3. The 
conversion from dimensionless binormal wavenumber kb to toroidal mode number n is 
given by n = 1.04103 kb. For this plot, we choose k||base = 0.0003 (k||baseR = 1.5687).   
This is the fundamental mode.  Then we calculate growth rates for all the m k||base (m 
= 1, 2, 3, …) and pick the maximum .  This is done for Lu = 5 (parallel KH mode) and 
Lu = 500 (remnant DW mode). 
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Fig. 3 Semi-analytic growth rates optimized over m k||base for Lu 

= 5 (red) and 500 (black) (growth rate multiplied by 10).  Blue 

dots are the 2DX results.  
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Lu = 500 

Lu = 5 
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n (105 s1) 

Lu = 5 

(105 s1) 

Lu = 500

10 0.96151 -0.01152 

15 1.50619 -0.00577 

20 1.93679 -0.00086 

25 2.36788  0.00553 

30 2.77891  0.01543 

35 3.16148  0.03085 

40 3.54409  0.05398 

45 3.90071  0.08727 

50 4.25273  0.13338 

 

Table 1. Table of semi-analytic growth rates for the benchmark 

case shown in Fig. 3. These are the target results for the 

benchmark test of the numerical code (2DX). 
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