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A. Introduction 
This test was devised to verify the ability of the 2DX eigenvalue code to correctly 

solve a fluid model relevant to turbulence in tokamaks, viz. the toroidal ion temperature 
gradient (ITG) mode.1,2  Since the functionality of the 2DX code depends on both the 
source code itself and the input file defining the system of equations to solve (structure 
file), this test demonstrates both. Similar tests have been performed using other physics 
models. Moreover, since the structure file for these tests represents a subset of a more 
general 6-field model, many of the terms in that test are also verified.  A more detailed 
description of the 2DX code can be found in Ref. 3. 

The present test compares 2DX results to exact semi-analytic results based on a 
local limit of the eigenvalue problem.  The semi-analytic results are equivalent to the 
numerical solution of a polynomial dispersion relation, i.e. they are obtained without 
discretization.  The 2DX solutions of the ITG problem given here implement the limit of 
Maxwell-Boltzmann electrons analytically in the model equations.  Although 2DX 
supports more general electron models, this was done to facilitate comparison with 
simulation codes using the same approximation. 

B. The toroidal ITG 3-field model 
From the full 6-fld model described in Ref. 3, one obtains a sublimit appropriate 

to the toroidal ITG mode1,2 as 
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where we work in Bohm-normalized variables with times normalized to 1/i, lengths 
normalized to s, temperature and electrostatic potential /e to a reference value of Te, 
and density to a reference value of ne. Here  = mi/me, and for any Q, || Q = B|| 
(B1Q), r  = RBp  / , kb is the binormal component of the perpendicular 
wavenumber; other symbols have their usual meanings.3  In particular , n, Ti and J 
are respectively the perturbations of electrostatic potential, density, ion temperature and 
parallel current. 

In the local limit, and choosing local values for i, s, Te and ne, we set n = B = Te = 1 
and Ti = We drop ii let  enrbE iniknv  where nk rben   
similarly  iTiE iTv and we note that eniiT   .  The perturbed 
pressures in this limit are iT)1(np   and npe  .  This gives 

 J]T)1(n[C2kik ||ir
2

i
2    (5) 

   JnC2in ||ren    (6) 

 





 





  ir||iTi T

2

5
nC

3

4
J

3

2
iT  (7) 

 )n(J ||   (8) 

where R/ikC br  and R is the curvature radius.   Finally we take the Maxwell-

Boltzmann limit analytically to obtain a 3-field model 
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For the semi-analytical solutions in a slab we also take 22 k  , and || = ik||, 
while these operators retain their full differential form in the 2DX numerical solution. 

If we chose Ln = 1, i.e. set ben k  then frequencies are effectively 
renormalized to Ln/cs as in Sandberg2.  Furthermore we then identify 2/ikC nbr  , 

biiT k , bii k)1(  [Caution: note the different sign convention in the 
definitions of iT and i .]  Equations (9) – (11) are equivalent to the Sandberg 2-field 
model,2 which is obtained by eliminating J|| analytically.  We do not perform that 
elimination here; instead, we retain the model in the 3-field form.   

It turns out that the present toroidal ITG problem tests a generalized eigenvalue 
capability of the 2DX code. Specifically, of the three unknowns, , Ti and J in Eqs. 
(9) – (11), only   and Ti appear on the left-hand-side.  This results in a generalized 
eigenvalue problem where the matrix on the left-hand-side is non-invertible.   The 2DX 
code (and the underlying SLEPc4 eigenvalue solver) have no difficulty with this 
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structure.  This observation significantly broadens the class of models that can be treated 
by 2DX. 

C. The toroidal ITG benchmark test 
We choose base case parameters for a closed flux surface edge plasma case to 

define values for ne, Te, Ti, Ln.  Dimensional benchmark parameters for case #1 are:  = 
Z = 1 (Hydrogen), ne = 4.77  1012 cm-3, Ln = 1.09 cm, Ti = Te = 17.0 eV, LTi = 0.260 
cm, n = 0.00497 cm1 (~ 1/R), B = 1.57  104 G, s = 0.0268 cm (i.e. evaluated where 
we will apply local theory), cs = 4.03  106 cm/s  (i.e. evaluated where we will apply 
local theory).  The corresponding dimensionless benchmark parameters are: kbs =  0 to 
1 (will be scanned), n = 2 Ln n = 0.0108,  = 1, i = 4.20.  (For these parameters, the 
Sandberg-dimensionless results can be converted to CGS units by multiplying the 
dimensionless kb by 1830 to get n and multiplying the Sandberg  by 3.69  106 to get 
1/s.) 

For a second case, case #2, which has a broader instability band in kb, we 
artificially increase n and hencen by a factor of 10, n = 10*0.00497 cm1 (~ 1/R), n 
= 0.108. 

Figure 5 shows the comparison of 2DX code results with semi-analytic growth 
rates for benchmark cases #1 and #2. 
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Fig. 1 ITG growth rate for the 2DX benchmark cases #1 (green) 
and #2 (red). Solid lines are the analytical result, disks are the 
2DX results. 
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n (105 s1) 
case #1

(105 s1) 
case #2 

100 0.000 0.852

200 0.000 1.792

300 0.000 2.870

400  0.000 4.089

500 0.000 5.401

600 0.000 6.729

700 1.111 7.967

800 2.045 8.986

900 1.201 9.629

1000 0.000 9.685

1100 0.000 8.804

1200 0.000 6.073

1300 0.000 0.000

 

Table 1. Table of semi-analytic growth rates for the toroidal ITG 

benchmark cases shown in Fig. 1. These are the target results 

for the benchmark test of the numerical code (2DX). 

References 
1. see e.g. J. Chen and A.K. Sen, Phys. Rev. Lett. 72, 3997 (1994) for a brief summary 

of the slab and toroidal branches. 
2. I. Sandberg, Phys. Plasmas 12, 050701 (2005); and Refs. therein. 
3. D. A. Baver, J. R. Myra and M.V. Umansky, Comp. Phys. Comm. 182, 1610, (2011). 
4. http://www.grycap.upv.es/slepc/ 

 


